[5620] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
[5777] | 26 | using HeuristicLab.Optimization;
|
---|
[5620] | 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 30 | /// <summary>
|
---|
[6184] | 31 | /// Represents a classification data analysis solution
|
---|
[5620] | 32 | /// </summary>
|
---|
| 33 | [StorableClass]
|
---|
[6184] | 34 | public class ClassificationSolution : DataAnalysisSolution, IClassificationSolution {
|
---|
[5649] | 35 | private const string TrainingAccuracyResultName = "Accuracy (training)";
|
---|
| 36 | private const string TestAccuracyResultName = "Accuracy (test)";
|
---|
[5717] | 37 |
|
---|
| 38 | public new IClassificationModel Model {
|
---|
| 39 | get { return (IClassificationModel)base.Model; }
|
---|
| 40 | protected set { base.Model = value; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public new IClassificationProblemData ProblemData {
|
---|
| 44 | get { return (IClassificationProblemData)base.ProblemData; }
|
---|
| 45 | protected set { base.ProblemData = value; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public double TrainingAccuracy {
|
---|
| 49 | get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
|
---|
| 50 | private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | public double TestAccuracy {
|
---|
| 54 | get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
|
---|
| 55 | private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
[5620] | 58 | [StorableConstructor]
|
---|
| 59 | protected ClassificationSolution(bool deserializing) : base(deserializing) { }
|
---|
| 60 | protected ClassificationSolution(ClassificationSolution original, Cloner cloner)
|
---|
| 61 | : base(original, cloner) {
|
---|
| 62 | }
|
---|
[5624] | 63 | public ClassificationSolution(IClassificationModel model, IClassificationProblemData problemData)
|
---|
| 64 | : base(model, problemData) {
|
---|
[5717] | 65 | Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
| 66 | Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
[6415] | 67 | CalculateResults();
|
---|
[5717] | 68 | }
|
---|
| 69 |
|
---|
[6184] | 70 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 71 | return new ClassificationSolution(this, cloner);
|
---|
| 72 | }
|
---|
| 73 |
|
---|
[6415] | 74 | protected override void RecalculateResults() {
|
---|
| 75 | CalculateResults();
|
---|
[5717] | 76 | }
|
---|
| 77 |
|
---|
[6415] | 78 | private void CalculateResults() {
|
---|
[5649] | 79 | double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
|
---|
| 80 | IEnumerable<double> originalTrainingClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
|
---|
| 81 | double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
|
---|
| 82 | IEnumerable<double> originalTestClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
|
---|
| 83 |
|
---|
[5942] | 84 | OnlineCalculatorError errorState;
|
---|
| 85 | double trainingAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues, out errorState);
|
---|
| 86 | if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
|
---|
| 87 | double testAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTestClassValues, originalTestClassValues, out errorState);
|
---|
| 88 | if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
|
---|
[5649] | 89 |
|
---|
[5717] | 90 | TrainingAccuracy = trainingAccuracy;
|
---|
| 91 | TestAccuracy = testAccuracy;
|
---|
[5620] | 92 | }
|
---|
| 93 |
|
---|
[5649] | 94 | public virtual IEnumerable<double> EstimatedClassValues {
|
---|
[5620] | 95 | get {
|
---|
| 96 | return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[5649] | 100 | public virtual IEnumerable<double> EstimatedTrainingClassValues {
|
---|
[5620] | 101 | get {
|
---|
| 102 | return GetEstimatedClassValues(ProblemData.TrainingIndizes);
|
---|
| 103 | }
|
---|
| 104 | }
|
---|
| 105 |
|
---|
[5649] | 106 | public virtual IEnumerable<double> EstimatedTestClassValues {
|
---|
[5620] | 107 | get {
|
---|
| 108 | return GetEstimatedClassValues(ProblemData.TestIndizes);
|
---|
| 109 | }
|
---|
| 110 | }
|
---|
| 111 |
|
---|
[5649] | 112 | public virtual IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
|
---|
| 113 | return Model.GetEstimatedClassValues(ProblemData.Dataset, rows);
|
---|
[5620] | 114 | }
|
---|
| 115 | }
|
---|
| 116 | }
|
---|