1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
29 | /// <summary>
|
---|
30 | /// Represents a symbolic regression model
|
---|
31 | /// </summary>
|
---|
32 | [StorableClass]
|
---|
33 | [Item(Name = "Symbolic Regression Model", Description = "Represents a symbolic regression model.")]
|
---|
34 | public class SymbolicRegressionModel : SymbolicDataAnalysisModel, ISymbolicRegressionModel {
|
---|
35 | [Storable]
|
---|
36 | private double lowerEstimationLimit;
|
---|
37 | [Storable]
|
---|
38 | private double upperEstimationLimit;
|
---|
39 |
|
---|
40 | [StorableConstructor]
|
---|
41 | protected SymbolicRegressionModel(bool deserializing) : base(deserializing) { }
|
---|
42 | protected SymbolicRegressionModel(SymbolicRegressionModel original, Cloner cloner)
|
---|
43 | : base(original, cloner) {
|
---|
44 | this.lowerEstimationLimit = original.lowerEstimationLimit;
|
---|
45 | this.upperEstimationLimit = original.upperEstimationLimit;
|
---|
46 | }
|
---|
47 | public SymbolicRegressionModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
48 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
|
---|
49 | : base(tree, interpreter) {
|
---|
50 | this.lowerEstimationLimit = lowerEstimationLimit;
|
---|
51 | this.upperEstimationLimit = upperEstimationLimit;
|
---|
52 | }
|
---|
53 |
|
---|
54 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
55 | return new SymbolicRegressionModel(this, cloner);
|
---|
56 | }
|
---|
57 |
|
---|
58 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
59 | return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows)
|
---|
60 | .LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
61 | }
|
---|
62 |
|
---|
63 | public ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
64 | return new SymbolicRegressionSolution(this, problemData);
|
---|
65 | }
|
---|
66 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
67 | return CreateRegressionSolution(problemData);
|
---|
68 | }
|
---|
69 |
|
---|
70 | public static void Scale(SymbolicRegressionModel model, IRegressionProblemData problemData) {
|
---|
71 | var dataset = problemData.Dataset;
|
---|
72 | var targetVariable = problemData.TargetVariable;
|
---|
73 | var rows = problemData.TrainingIndizes;
|
---|
74 | var estimatedValues = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset, rows);
|
---|
75 | var targetValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
|
---|
76 | double alpha;
|
---|
77 | double beta;
|
---|
78 | OnlineCalculatorError errorState;
|
---|
79 | OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta, out errorState);
|
---|
80 | if (errorState != OnlineCalculatorError.None) return;
|
---|
81 |
|
---|
82 | ConstantTreeNode alphaTreeNode = null;
|
---|
83 | ConstantTreeNode betaTreeNode = null;
|
---|
84 | // check if model has been scaled previously by analyzing the structure of the tree
|
---|
85 | var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);
|
---|
86 | if (startNode.GetSubtree(0).Symbol is Addition) {
|
---|
87 | var addNode = startNode.GetSubtree(0);
|
---|
88 | if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
|
---|
89 | alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
|
---|
90 | var mulNode = addNode.GetSubtree(0);
|
---|
91 | if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
|
---|
92 | betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
|
---|
93 | }
|
---|
94 | }
|
---|
95 | }
|
---|
96 | // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
|
---|
97 | if (alphaTreeNode != null && betaTreeNode != null) {
|
---|
98 | betaTreeNode.Value *= beta;
|
---|
99 | alphaTreeNode.Value *= beta;
|
---|
100 | alphaTreeNode.Value += alpha;
|
---|
101 | } else {
|
---|
102 | var mainBranch = startNode.GetSubtree(0);
|
---|
103 | startNode.RemoveSubtree(0);
|
---|
104 | var scaledMainBranch = MakeSum(MakeProduct(mainBranch, beta), alpha);
|
---|
105 | startNode.AddSubtree(scaledMainBranch);
|
---|
106 | }
|
---|
107 | }
|
---|
108 |
|
---|
109 | private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
|
---|
110 | if (alpha.IsAlmost(0.0)) {
|
---|
111 | return treeNode;
|
---|
112 | } else {
|
---|
113 | var addition = new Addition();
|
---|
114 | var node = addition.CreateTreeNode();
|
---|
115 | var alphaConst = MakeConstant(alpha);
|
---|
116 | node.AddSubtree(treeNode);
|
---|
117 | node.AddSubtree(alphaConst);
|
---|
118 | return node;
|
---|
119 | }
|
---|
120 | }
|
---|
121 |
|
---|
122 | private static ISymbolicExpressionTreeNode MakeProduct(ISymbolicExpressionTreeNode treeNode, double beta) {
|
---|
123 | if (beta.IsAlmost(1.0)) {
|
---|
124 | return treeNode;
|
---|
125 | } else {
|
---|
126 | var multipliciation = new Multiplication();
|
---|
127 | var node = multipliciation.CreateTreeNode();
|
---|
128 | var betaConst = MakeConstant(beta);
|
---|
129 | node.AddSubtree(treeNode);
|
---|
130 | node.AddSubtree(betaConst);
|
---|
131 | return node;
|
---|
132 | }
|
---|
133 | }
|
---|
134 |
|
---|
135 | private static ISymbolicExpressionTreeNode MakeConstant(double c) {
|
---|
136 | var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
137 | node.Value = c;
|
---|
138 | return node;
|
---|
139 | }
|
---|
140 | }
|
---|
141 | }
|
---|