1 | /*
|
---|
2 | * SVM.NET Library
|
---|
3 | * Copyright (C) 2008 Matthew Johnson
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 | using System;
|
---|
21 | using System.Collections.Generic;
|
---|
22 |
|
---|
23 | namespace SVM
|
---|
24 | {
|
---|
25 | /// <remarks>
|
---|
26 | /// Class containing the routines to train SVM models.
|
---|
27 | /// </remarks>
|
---|
28 | public static class Training
|
---|
29 | {
|
---|
30 | private static double doCrossValidation(Problem problem, Parameter parameters, int nr_fold)
|
---|
31 | {
|
---|
32 | int i;
|
---|
33 | double[] target = new double[problem.Count];
|
---|
34 | Dictionary<int, double>[] confidence = new Dictionary<int, double>[problem.Count];
|
---|
35 | Procedures.svm_cross_validation(problem, parameters, nr_fold, target, confidence);
|
---|
36 | if (parameters.Probability)
|
---|
37 | {
|
---|
38 | List<RankPair> ranks = new List<RankPair>();
|
---|
39 | for (i = 0; i < target.Length; i++)
|
---|
40 | ranks.Add(new RankPair(confidence[i][1], problem.Y[i]));
|
---|
41 | PerformanceEvaluator eval = new PerformanceEvaluator(ranks);
|
---|
42 | return eval.AuC*eval.AP;
|
---|
43 | }
|
---|
44 | else
|
---|
45 | {
|
---|
46 | int total_correct = 0;
|
---|
47 | double total_error = 0;
|
---|
48 | double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
|
---|
49 | if (parameters.SvmType == SvmType.EPSILON_SVR || parameters.SvmType == SvmType.NU_SVR)
|
---|
50 | {
|
---|
51 | for (i = 0; i < problem.Count; i++)
|
---|
52 | {
|
---|
53 | double y = problem.Y[i];
|
---|
54 | double v = target[i];
|
---|
55 | total_error += (v - y) * (v - y);
|
---|
56 | sumv += v;
|
---|
57 | sumy += y;
|
---|
58 | sumvv += v * v;
|
---|
59 | sumyy += y * y;
|
---|
60 | sumvy += v * y;
|
---|
61 | }
|
---|
62 | }
|
---|
63 | else
|
---|
64 | for (i = 0; i < problem.Count; i++)
|
---|
65 | if (target[i] == problem.Y[i])
|
---|
66 | ++total_correct;
|
---|
67 | return (double)total_correct / problem.Count;
|
---|
68 | }
|
---|
69 |
|
---|
70 | }
|
---|
71 | /// <summary>
|
---|
72 | /// Legacy. Allows use as if this was svm_train. See libsvm documentation for details on which arguments to pass.
|
---|
73 | /// </summary>
|
---|
74 | /// <param name="args"></param>
|
---|
75 | [Obsolete("Provided only for legacy compatibility, use the other Train() methods")]
|
---|
76 | public static void Train(params string[] args)
|
---|
77 | {
|
---|
78 | Parameter parameters;
|
---|
79 | Problem problem;
|
---|
80 | bool crossValidation;
|
---|
81 | int nrfold;
|
---|
82 | string modelFilename;
|
---|
83 | parseCommandLine(args, out parameters, out problem, out crossValidation, out nrfold, out modelFilename);
|
---|
84 | if (crossValidation)
|
---|
85 | PerformCrossValidation(problem, parameters, nrfold);
|
---|
86 | else Model.Write(modelFilename, Train(problem, parameters));
|
---|
87 | }
|
---|
88 |
|
---|
89 | /// <summary>
|
---|
90 | /// Performs cross validation.
|
---|
91 | /// </summary>
|
---|
92 | /// <param name="problem">The training data</param>
|
---|
93 | /// <param name="parameters">The parameters to test</param>
|
---|
94 | /// <param name="nrfold">The number of cross validations to use</param>
|
---|
95 | /// <returns>The cross validation score</returns>
|
---|
96 | public static double PerformCrossValidation(Problem problem, Parameter parameters, int nrfold)
|
---|
97 | {
|
---|
98 | Procedures.svm_check_parameter(problem, parameters);
|
---|
99 | return doCrossValidation(problem, parameters, nrfold);
|
---|
100 | }
|
---|
101 |
|
---|
102 | /// <summary>
|
---|
103 | /// Trains a model using the provided training data and parameters.
|
---|
104 | /// </summary>
|
---|
105 | /// <param name="problem">The training data</param>
|
---|
106 | /// <param name="parameters">The parameters to use</param>
|
---|
107 | /// <returns>A trained SVM Model</returns>
|
---|
108 | public static Model Train(Problem problem, Parameter parameters)
|
---|
109 | {
|
---|
110 | Procedures.svm_check_parameter(problem, parameters);
|
---|
111 |
|
---|
112 | return Procedures.svm_train(problem, parameters);
|
---|
113 | }
|
---|
114 |
|
---|
115 | private static void parseCommandLine(string[] args, out Parameter parameters, out Problem problem, out bool crossValidation, out int nrfold, out string modelFilename)
|
---|
116 | {
|
---|
117 | int i;
|
---|
118 |
|
---|
119 | parameters = new Parameter();
|
---|
120 | // default values
|
---|
121 |
|
---|
122 | crossValidation = false;
|
---|
123 | nrfold = 0;
|
---|
124 |
|
---|
125 | // parse options
|
---|
126 | for (i = 0; i < args.Length; i++)
|
---|
127 | {
|
---|
128 | if (args[i][0] != '-')
|
---|
129 | break;
|
---|
130 | ++i;
|
---|
131 | switch (args[i - 1][1])
|
---|
132 | {
|
---|
133 |
|
---|
134 | case 's':
|
---|
135 | parameters.SvmType = (SvmType)int.Parse(args[i]);
|
---|
136 | break;
|
---|
137 |
|
---|
138 | case 't':
|
---|
139 | parameters.KernelType = (KernelType)int.Parse(args[i]);
|
---|
140 | break;
|
---|
141 |
|
---|
142 | case 'd':
|
---|
143 | parameters.Degree = int.Parse(args[i]);
|
---|
144 | break;
|
---|
145 |
|
---|
146 | case 'g':
|
---|
147 | parameters.Gamma = double.Parse(args[i]);
|
---|
148 | break;
|
---|
149 |
|
---|
150 | case 'r':
|
---|
151 | parameters.Coefficient0 = double.Parse(args[i]);
|
---|
152 | break;
|
---|
153 |
|
---|
154 | case 'n':
|
---|
155 | parameters.Nu = double.Parse(args[i]);
|
---|
156 | break;
|
---|
157 |
|
---|
158 | case 'm':
|
---|
159 | parameters.CacheSize = double.Parse(args[i]);
|
---|
160 | break;
|
---|
161 |
|
---|
162 | case 'c':
|
---|
163 | parameters.C = double.Parse(args[i]);
|
---|
164 | break;
|
---|
165 |
|
---|
166 | case 'e':
|
---|
167 | parameters.EPS = double.Parse(args[i]);
|
---|
168 | break;
|
---|
169 |
|
---|
170 | case 'p':
|
---|
171 | parameters.P = double.Parse(args[i]);
|
---|
172 | break;
|
---|
173 |
|
---|
174 | case 'h':
|
---|
175 | parameters.Shrinking = int.Parse(args[i]) == 1;
|
---|
176 | break;
|
---|
177 |
|
---|
178 | case 'b':
|
---|
179 | parameters.Probability = int.Parse(args[i]) == 1;
|
---|
180 | break;
|
---|
181 |
|
---|
182 | case 'v':
|
---|
183 | crossValidation = true;
|
---|
184 | nrfold = int.Parse(args[i]);
|
---|
185 | if (nrfold < 2)
|
---|
186 | {
|
---|
187 | throw new ArgumentException("n-fold cross validation: n must >= 2");
|
---|
188 | }
|
---|
189 | break;
|
---|
190 |
|
---|
191 | case 'w':
|
---|
192 | ++parameters.WeightCount;
|
---|
193 | {
|
---|
194 | int[] old = parameters.WeightLabels;
|
---|
195 | parameters.WeightLabels = new int[parameters.WeightCount];
|
---|
196 | Array.Copy(old, 0, parameters.WeightLabels, 0, parameters.WeightCount - 1);
|
---|
197 | }
|
---|
198 | {
|
---|
199 | double[] old = parameters.Weights;
|
---|
200 | parameters.Weights = new double[parameters.WeightCount];
|
---|
201 | Array.Copy(old, 0, parameters.Weights, 0, parameters.WeightCount - 1);
|
---|
202 | }
|
---|
203 |
|
---|
204 | parameters.WeightLabels[parameters.WeightCount - 1] = int.Parse(args[i - 1].Substring(2));
|
---|
205 | parameters.Weights[parameters.WeightCount - 1] = double.Parse(args[i]);
|
---|
206 | break;
|
---|
207 |
|
---|
208 | default:
|
---|
209 | throw new ArgumentException("Unknown Parameter");
|
---|
210 | }
|
---|
211 | }
|
---|
212 |
|
---|
213 | // determine filenames
|
---|
214 |
|
---|
215 | if (i >= args.Length)
|
---|
216 | throw new ArgumentException("No input file specified");
|
---|
217 |
|
---|
218 | problem = Problem.Read(args[i]);
|
---|
219 |
|
---|
220 | if (parameters.Gamma == 0)
|
---|
221 | parameters.Gamma = 1.0 / problem.MaxIndex;
|
---|
222 |
|
---|
223 | if (i < args.Length - 1)
|
---|
224 | modelFilename = args[i + 1];
|
---|
225 | else
|
---|
226 | {
|
---|
227 | int p = args[i].LastIndexOf('/') + 1;
|
---|
228 | modelFilename = args[i].Substring(p) + ".model";
|
---|
229 | }
|
---|
230 | }
|
---|
231 | }
|
---|
232 | } |
---|