1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Selection;
|
---|
29 | using HeuristicLab.StatisticalAnalysis;
|
---|
30 | using HeuristicLab.Tracing;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Selection.Uncertainty {
|
---|
33 | public class UncertainTournamentSelector : StochasticSelectorBase {
|
---|
34 | public override string Description {
|
---|
35 | get { return @"Selects an individual from a tournament group, based on tests of statistical significance of quality arrays."; }
|
---|
36 | }
|
---|
37 |
|
---|
38 | public UncertainTournamentSelector()
|
---|
39 | : base() {
|
---|
40 | AddVariableInfo(new VariableInfo("QualitySamples", "The array of quality samples resulting from several evaluations", typeof(DoubleArrayData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("Maximization", "Maximization problem", typeof(BoolData), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("GroupSize", "Size of the tournament group", typeof(IntData), VariableKind.In));
|
---|
43 | GetVariableInfo("GroupSize").Local = true;
|
---|
44 | AddVariable(new Variable("GroupSize", new IntData(2)));
|
---|
45 | GetVariable("CopySelected").GetValue<BoolData>().Data = true;
|
---|
46 | AddVariableInfo(new VariableInfo("SignificanceLevel", "The significance level for the mann whitney wilcoxon rank sum test", typeof(DoubleData), VariableKind.In));
|
---|
47 | GetVariableInfo("SignificanceLevel").Local = true;
|
---|
48 | AddVariable(new Variable("SignificanceLevel", new DoubleData(0.05)));
|
---|
49 | }
|
---|
50 |
|
---|
51 | protected override void Select(IRandom random, IScope source, int selected, IScope target, bool copySelected) {
|
---|
52 | IVariableInfo qualityInfo = GetVariableInfo("QualitySamples");
|
---|
53 | bool maximization = GetVariableValue<BoolData>("Maximization", source, true).Data;
|
---|
54 | int groupSize = GetVariableValue<IntData>("GroupSize", source, true).Data;
|
---|
55 | double alpha = GetVariableValue<DoubleData>("SignificanceLevel", source, true).Data;
|
---|
56 |
|
---|
57 | int insignificantCount = 0;
|
---|
58 | int equalRankListSize = 0;
|
---|
59 | for (int i = 0; i < selected; i++) {
|
---|
60 | if (source.SubScopes.Count < 1) throw new InvalidOperationException("No source scopes available to select.");
|
---|
61 |
|
---|
62 | double[][] tournamentGroup = new double[groupSize][];
|
---|
63 | int[] tournamentGroupIndices = new int[groupSize];
|
---|
64 | double[] tournamentGroupAverages = new double[groupSize];
|
---|
65 | for (int j = 0; j < groupSize; j++) {
|
---|
66 | tournamentGroupIndices[j] = random.Next(source.SubScopes.Count);
|
---|
67 | tournamentGroup[j] = source.SubScopes[tournamentGroupIndices[j]].GetVariableValue<DoubleArrayData>(qualityInfo.FormalName, false).Data;
|
---|
68 | double sum = 0.0;
|
---|
69 | for (int k = 0; k < tournamentGroup[j].Length; k++) {
|
---|
70 | sum += tournamentGroup[j][k];
|
---|
71 | }
|
---|
72 | tournamentGroupAverages[j] = sum / (double)tournamentGroup[j].Length;
|
---|
73 | }
|
---|
74 |
|
---|
75 | int[] rankList = new int[groupSize];
|
---|
76 | int highestRank = 0;
|
---|
77 | IList<int> equalRankList = new List<int>(groupSize);
|
---|
78 | for (int j = 0; j < groupSize - 1; j++) {
|
---|
79 | for (int k = j + 1; k < groupSize; k++) {
|
---|
80 | if (MannWhitneyWilcoxonTest.TwoTailedTest(tournamentGroup[j], tournamentGroup[k], alpha)) { // if a 2-tailed test is successful it means that two solutions are likely different
|
---|
81 | if (maximization && tournamentGroupAverages[j] > tournamentGroupAverages[k]
|
---|
82 | || !maximization && tournamentGroupAverages[j] < tournamentGroupAverages[k]) {
|
---|
83 | rankList[j]++;
|
---|
84 | if (rankList[j] > highestRank) {
|
---|
85 | highestRank = rankList[j];
|
---|
86 | equalRankList.Clear();
|
---|
87 | equalRankList.Add(j);
|
---|
88 | } else if (rankList[j] == highestRank) {
|
---|
89 | equalRankList.Add(j);
|
---|
90 | }
|
---|
91 | } else if (maximization && tournamentGroupAverages[j] < tournamentGroupAverages[k]
|
---|
92 | || !maximization && tournamentGroupAverages[j] > tournamentGroupAverages[k]) {
|
---|
93 | rankList[k]++;
|
---|
94 | if (rankList[k] > highestRank) {
|
---|
95 | highestRank = rankList[k];
|
---|
96 | equalRankList.Clear();
|
---|
97 | equalRankList.Add(k);
|
---|
98 | } else if (rankList[k] == highestRank) {
|
---|
99 | equalRankList.Add(k);
|
---|
100 | }
|
---|
101 | }
|
---|
102 | // else there's a statistical significant difference, but equal average qualities... can that happen? in any case, nobody gets a rank increase
|
---|
103 | }
|
---|
104 | }
|
---|
105 | }
|
---|
106 | int selectedScopeIndex = 0;
|
---|
107 | if (equalRankList.Count == 0) {
|
---|
108 | insignificantCount++;
|
---|
109 | selectedScopeIndex = tournamentGroupIndices[random.Next(groupSize)]; // no significance in all the solutions, select one randomly
|
---|
110 | } else {
|
---|
111 | equalRankListSize += equalRankList.Count;
|
---|
112 | selectedScopeIndex = tournamentGroupIndices[equalRankList[random.Next(equalRankList.Count)]]; // select among those with the highest rank randomly
|
---|
113 | }
|
---|
114 | IScope selectedScope = source.SubScopes[selectedScopeIndex];
|
---|
115 |
|
---|
116 | if (copySelected)
|
---|
117 | target.AddSubScope((IScope)selectedScope.Clone());
|
---|
118 | else {
|
---|
119 | source.RemoveSubScope(selectedScope);
|
---|
120 | target.AddSubScope(selectedScope);
|
---|
121 | }
|
---|
122 | }
|
---|
123 | Logger.Debug("Solutions selected: " + selected + ". Completely random selections: " + insignificantCount + ". Average size of highest rank pool: " + (double)equalRankListSize / (double)selected);
|
---|
124 | }
|
---|
125 | }
|
---|
126 | }
|
---|