1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.StatisticalAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Selection.Uncertainty {
|
---|
31 | public class UncertainBestSelector : StochasticSelectorBase {
|
---|
32 | public override string Description {
|
---|
33 | get { return @"Selects an individual from a tournament group, based on tests of statistical significance of quality arrays."; }
|
---|
34 | }
|
---|
35 |
|
---|
36 | public UncertainBestSelector()
|
---|
37 | : base() {
|
---|
38 | AddVariableInfo(new VariableInfo("QualitySamples", "The array of quality samples resulting from several evaluations", typeof(DoubleArrayData), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("Maximization", "Maximization problem", typeof(BoolData), VariableKind.In));
|
---|
40 | GetVariable("CopySelected").GetValue<BoolData>().Data = true;
|
---|
41 | AddVariableInfo(new VariableInfo("SignificanceLevel", "The significance level for the mann whitney wilcoxon rank sum test", typeof(DoubleData), VariableKind.In));
|
---|
42 | GetVariableInfo("SignificanceLevel").Local = true;
|
---|
43 | AddVariable(new Variable("SignificanceLevel", new DoubleData(0.05)));
|
---|
44 | }
|
---|
45 |
|
---|
46 | protected override void Select(IRandom random, IScope source, int selected, IScope target, bool copySelected) {
|
---|
47 | if (source.SubScopes.Count < 1) throw new InvalidOperationException("No source scopes available to select.");
|
---|
48 | IVariableInfo qualityInfo = GetVariableInfo("QualitySamples");
|
---|
49 | bool maximization = GetVariableValue<BoolData>("Maximization", source, true).Data;
|
---|
50 | double alpha = GetVariableValue<DoubleData>("SignificanceLevel", source, true).Data;
|
---|
51 |
|
---|
52 | int poolSize = source.SubScopes.Count;
|
---|
53 | double[][] selectionGroupSamples = new double[poolSize][];
|
---|
54 | double[] selectionGroupAverages = new double[poolSize];
|
---|
55 | int[] selectionGroupIndices = new int[poolSize];
|
---|
56 | for (int j = 0; j < poolSize; j++) {
|
---|
57 | selectionGroupIndices[j] = j;
|
---|
58 | selectionGroupSamples[j] = source.SubScopes[j].GetVariableValue<DoubleArrayData>(qualityInfo.FormalName, false).Data;
|
---|
59 | double sum = 0.0;
|
---|
60 | for (int k = 0; k < selectionGroupSamples[j].Length; k++) {
|
---|
61 | sum += selectionGroupSamples[j][k];
|
---|
62 | }
|
---|
63 | selectionGroupAverages[j] = sum / (double)selectionGroupSamples[j].Length;
|
---|
64 | }
|
---|
65 |
|
---|
66 | int[] rankList = new int[poolSize];
|
---|
67 | for (int j = 0; j < poolSize - 1; j++) {
|
---|
68 | for (int k = j + 1; k < poolSize; k++) {
|
---|
69 | if (MannWhitneyWilcoxonTest.TwoTailedTest(selectionGroupSamples[j], selectionGroupSamples[k], alpha)) { // if a 2-tailed test is successful it means that two solutions are likely different
|
---|
70 | if (maximization && selectionGroupAverages[j] > selectionGroupAverages[k]
|
---|
71 | || !maximization && selectionGroupAverages[j] < selectionGroupAverages[k]) {
|
---|
72 | rankList[j]++;
|
---|
73 | } else if (maximization && selectionGroupAverages[j] < selectionGroupAverages[k]
|
---|
74 | || !maximization && selectionGroupAverages[j] > selectionGroupAverages[k]) {
|
---|
75 | rankList[k]++;
|
---|
76 | }
|
---|
77 | // else there's a statistical significant difference, but equal average qualities... can that happen? in any case, nobody gets a rank increase
|
---|
78 | }
|
---|
79 | }
|
---|
80 | }
|
---|
81 |
|
---|
82 | Array.Sort<int, int>(rankList, selectionGroupIndices);
|
---|
83 | Array.Sort<int>(rankList);
|
---|
84 |
|
---|
85 | List<IScope> selectedScopes = new List<IScope>();
|
---|
86 | for (int i = 0; i < selected; i++) {
|
---|
87 | int selectedScopeIndex = selectionGroupIndices[poolSize - i - 1];
|
---|
88 | IScope selectedScope = source.SubScopes[selectedScopeIndex];
|
---|
89 | target.AddSubScope((IScope)selectedScope.Clone());
|
---|
90 | selectedScopes.Add(selectedScope);
|
---|
91 | }
|
---|
92 | if (!copySelected) {
|
---|
93 | while (selectedScopes.Count > 0) {
|
---|
94 | source.RemoveSubScope(selectedScopes[0]);
|
---|
95 | selectedScopes.RemoveAt(0);
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|
99 | }
|
---|
100 | }
|
---|