1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
26 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
27 | namespace HeuristicLab.Problems.DataAnalysis_34.Tests {
|
---|
28 |
|
---|
29 | [TestClass()]
|
---|
30 | public class StatisticCalculatorsTest {
|
---|
31 | private double[,] testData = new double[,] {
|
---|
32 | {5,1,1,1,2,1,3,1,1,2},
|
---|
33 | {5,4,4,5,7,10,3,2,1,2},
|
---|
34 | {3,1,1,1,2,2,3,1,1,2},
|
---|
35 | {6,8,8,1,3,4,3,7,1,2},
|
---|
36 | {4,1,1,3,2,1,3,1,1,2},
|
---|
37 | {8,10,10,8,7,10,9,7,1,4},
|
---|
38 | {1,1,1,1,2,10,3,1,1,2},
|
---|
39 | {2,1,2,1,2,1,3,1,1,2},
|
---|
40 | {2,1,1,1,2,1,1,1,5,2},
|
---|
41 | {4,2,1,1,2,1,2,1,1,2},
|
---|
42 | {1,1,1,1,1,1,3,1,1,2},
|
---|
43 | {2,1,1,1,2,1,2,1,1,2},
|
---|
44 | {5,3,3,3,2,3,4,4,1,4},
|
---|
45 | {8,7,5,10,7,9,5,5,4,4},
|
---|
46 | {7,4,6,4,6,1,4,3,1,4},
|
---|
47 | {4,1,1,1,2,1,2,1,1,2},
|
---|
48 | {4,1,1,1,2,1,3,1,1,2},
|
---|
49 | {10,7,7,6,4,10,4,1,2,4},
|
---|
50 | {6,1,1,1,2,1,3,1,1,2},
|
---|
51 | {7,3,2,10,5,10,5,4,4,4},
|
---|
52 | {10,5,5,3,6,7,7,10,1,4}
|
---|
53 | };
|
---|
54 |
|
---|
55 | [TestMethod]
|
---|
56 | public void CalculateMeanAndVarianceTest() {
|
---|
57 | System.Random random = new System.Random(31415);
|
---|
58 |
|
---|
59 | int n = testData.GetLength(0);
|
---|
60 | int cols = testData.GetLength(1);
|
---|
61 | {
|
---|
62 | for (int col = 0; col < cols; col++) {
|
---|
63 | double scale = random.NextDouble();
|
---|
64 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
65 | select testData[rows, col] * scale;
|
---|
66 | double[] xs = x.ToArray();
|
---|
67 | double mean_alglib, variance_alglib;
|
---|
68 | mean_alglib = variance_alglib = 0.0;
|
---|
69 | double tmp = 0;
|
---|
70 |
|
---|
71 | alglib.samplemoments(xs, n, out mean_alglib, out variance_alglib, out tmp, out tmp);
|
---|
72 |
|
---|
73 | var calculator = new OnlineMeanAndVarianceCalculator();
|
---|
74 | for (int i = 0; i < n; i++) {
|
---|
75 | calculator.Add(xs[i]);
|
---|
76 | }
|
---|
77 | double mean = calculator.Mean;
|
---|
78 | double variance = calculator.Variance;
|
---|
79 |
|
---|
80 | Assert.IsTrue(mean_alglib.IsAlmost(mean));
|
---|
81 | Assert.IsTrue(variance_alglib.IsAlmost(variance));
|
---|
82 | }
|
---|
83 | }
|
---|
84 | }
|
---|
85 |
|
---|
86 | [TestMethod]
|
---|
87 | public void CalculatePearsonsRSquaredTest() {
|
---|
88 | System.Random random = new System.Random(31415);
|
---|
89 | int n = testData.GetLength(0);
|
---|
90 | int cols = testData.GetLength(1);
|
---|
91 | for (int c1 = 0; c1 < cols; c1++) {
|
---|
92 | for (int c2 = c1 + 1; c2 < cols; c2++) {
|
---|
93 | {
|
---|
94 | double c1Scale = random.NextDouble() * 1E7;
|
---|
95 | double c2Scale = random.NextDouble() * 1E7;
|
---|
96 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
97 | select testData[rows, c1] * c1Scale;
|
---|
98 | IEnumerable<double> y = from rows in Enumerable.Range(0, n)
|
---|
99 | select testData[rows, c2] * c2Scale;
|
---|
100 | double[] xs = x.ToArray();
|
---|
101 | double[] ys = y.ToArray();
|
---|
102 | double r2_alglib = alglib.pearsoncorrelation(xs, ys, n);
|
---|
103 | r2_alglib *= r2_alglib;
|
---|
104 |
|
---|
105 | var r2Calculator = new OnlinePearsonsRSquaredCalculator();
|
---|
106 | for (int i = 0; i < n; i++) {
|
---|
107 | r2Calculator.Add(xs[i], ys[i]);
|
---|
108 | }
|
---|
109 | double r2 = r2Calculator.RSquared;
|
---|
110 |
|
---|
111 | Assert.IsTrue(r2_alglib.IsAlmost(r2));
|
---|
112 | }
|
---|
113 | }
|
---|
114 | }
|
---|
115 | }
|
---|
116 | [TestMethod]
|
---|
117 | public void CalculatePearsonsRSquaredOfConstantTest() {
|
---|
118 | System.Random random = new System.Random(31415);
|
---|
119 | int n = 12;
|
---|
120 | int cols = testData.GetLength(1);
|
---|
121 | for (int c1 = 0; c1 < cols; c1++) {
|
---|
122 | double c1Scale = random.NextDouble() * 1E7;
|
---|
123 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
124 | select testData[rows, c1] * c1Scale;
|
---|
125 | IEnumerable<double> y = (new List<double>() { 150494407424305.47 })
|
---|
126 | .Concat(Enumerable.Repeat(150494407424305.47, n - 1));
|
---|
127 | double[] xs = x.ToArray();
|
---|
128 | double[] ys = y.ToArray();
|
---|
129 | double r2_alglib = alglib.pearsoncorrelation(xs, ys, n);
|
---|
130 | r2_alglib *= r2_alglib;
|
---|
131 |
|
---|
132 | var r2Calculator = new OnlinePearsonsRSquaredCalculator();
|
---|
133 | for (int i = 0; i < n; i++) {
|
---|
134 | r2Calculator.Add(xs[i], ys[i]);
|
---|
135 | }
|
---|
136 | double r2 = r2Calculator.RSquared;
|
---|
137 |
|
---|
138 | Assert.AreEqual(r2_alglib.ToString(), r2.ToString());
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | [TestMethod]
|
---|
143 | public void CalculateHoeffdingsDTest() {
|
---|
144 | OnlineCalculatorError error;
|
---|
145 | // direct perfect dependency
|
---|
146 | var xs = new double[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
|
---|
147 | var ys = new double[] { 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
|
---|
148 | var d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
149 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
150 | Assert.AreEqual(d, 1.0, 1E-5);
|
---|
151 |
|
---|
152 | // perfect negative dependency
|
---|
153 | ys = xs.Select(x => -x).ToArray();
|
---|
154 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
155 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
156 | Assert.AreEqual(d, 1.0, 1E-5);
|
---|
157 |
|
---|
158 | // ties
|
---|
159 | xs = new double[] { 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 5.0, 5.0, 5.0 };
|
---|
160 | ys = new double[] { 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 5.0, 5.0, 6.0, 6.0, 6.0 };
|
---|
161 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
162 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
163 | Assert.AreEqual(d, 0.6783, 1E-5);
|
---|
164 |
|
---|
165 | // ties
|
---|
166 | xs = new double[] { 1.0, 1.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 6.0, 6.0 };
|
---|
167 | ys = xs.Select(x => x * x).ToArray();
|
---|
168 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
169 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
170 | Assert.AreEqual(d, 0.75, 1E-5);
|
---|
171 |
|
---|
172 | // degenerate
|
---|
173 | xs = new double[] { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
|
---|
174 | ys = new double[] { 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 };
|
---|
175 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
176 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
177 | Assert.AreEqual(d, -0.3516, 1E-4);
|
---|
178 |
|
---|
179 |
|
---|
180 | var normal = new HeuristicLab.Random.NormalDistributedRandom(new HeuristicLab.Random.MersenneTwister(31415), 0, 1);
|
---|
181 |
|
---|
182 | xs = Enumerable.Range(0, 1000).Select(i => normal.NextDouble()).ToArray();
|
---|
183 | ys = Enumerable.Range(0, 1000).Select(i => normal.NextDouble()).ToArray();
|
---|
184 |
|
---|
185 | // independent
|
---|
186 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
187 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
188 | Assert.AreEqual(d, -0.00023, 1E-5);
|
---|
189 |
|
---|
190 |
|
---|
191 | xs = Enumerable.Range(0, 1000).Select(i => normal.NextDouble()).ToArray();
|
---|
192 | ys = xs.Select(x => x * x).ToArray();
|
---|
193 |
|
---|
194 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
195 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
196 | Assert.AreEqual(d, 0.25071, 1E-5);
|
---|
197 |
|
---|
198 | // symmetric?
|
---|
199 | d = HoeffdingsDependenceCalculator.Calculate(ys, xs, out error);
|
---|
200 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
201 | Assert.AreEqual(d, 0.25071, 1E-5);
|
---|
202 |
|
---|
203 | }
|
---|
204 | }
|
---|
205 | }
|
---|