[5574] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7259] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5574] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
[6880] | 24 | using HeuristicLab.Common;
|
---|
[5944] | 25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[5574] | 26 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
[7915] | 27 | namespace HeuristicLab.Problems.DataAnalysis_34.Tests {
|
---|
[5574] | 28 |
|
---|
| 29 | [TestClass()]
|
---|
| 30 | public class StatisticCalculatorsTest {
|
---|
| 31 | private double[,] testData = new double[,] {
|
---|
| 32 | {5,1,1,1,2,1,3,1,1,2},
|
---|
| 33 | {5,4,4,5,7,10,3,2,1,2},
|
---|
| 34 | {3,1,1,1,2,2,3,1,1,2},
|
---|
| 35 | {6,8,8,1,3,4,3,7,1,2},
|
---|
| 36 | {4,1,1,3,2,1,3,1,1,2},
|
---|
| 37 | {8,10,10,8,7,10,9,7,1,4},
|
---|
| 38 | {1,1,1,1,2,10,3,1,1,2},
|
---|
| 39 | {2,1,2,1,2,1,3,1,1,2},
|
---|
| 40 | {2,1,1,1,2,1,1,1,5,2},
|
---|
| 41 | {4,2,1,1,2,1,2,1,1,2},
|
---|
| 42 | {1,1,1,1,1,1,3,1,1,2},
|
---|
| 43 | {2,1,1,1,2,1,2,1,1,2},
|
---|
| 44 | {5,3,3,3,2,3,4,4,1,4},
|
---|
| 45 | {8,7,5,10,7,9,5,5,4,4},
|
---|
| 46 | {7,4,6,4,6,1,4,3,1,4},
|
---|
| 47 | {4,1,1,1,2,1,2,1,1,2},
|
---|
| 48 | {4,1,1,1,2,1,3,1,1,2},
|
---|
| 49 | {10,7,7,6,4,10,4,1,2,4},
|
---|
| 50 | {6,1,1,1,2,1,3,1,1,2},
|
---|
| 51 | {7,3,2,10,5,10,5,4,4,4},
|
---|
| 52 | {10,5,5,3,6,7,7,10,1,4}
|
---|
| 53 | };
|
---|
| 54 |
|
---|
| 55 | [TestMethod]
|
---|
| 56 | public void CalculateMeanAndVarianceTest() {
|
---|
| 57 | System.Random random = new System.Random(31415);
|
---|
| 58 |
|
---|
| 59 | int n = testData.GetLength(0);
|
---|
| 60 | int cols = testData.GetLength(1);
|
---|
| 61 | {
|
---|
| 62 | for (int col = 0; col < cols; col++) {
|
---|
[6880] | 63 | double scale = random.NextDouble();
|
---|
[5574] | 64 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
| 65 | select testData[rows, col] * scale;
|
---|
| 66 | double[] xs = x.ToArray();
|
---|
| 67 | double mean_alglib, variance_alglib;
|
---|
| 68 | mean_alglib = variance_alglib = 0.0;
|
---|
| 69 | double tmp = 0;
|
---|
| 70 |
|
---|
| 71 | alglib.samplemoments(xs, n, out mean_alglib, out variance_alglib, out tmp, out tmp);
|
---|
| 72 |
|
---|
| 73 | var calculator = new OnlineMeanAndVarianceCalculator();
|
---|
| 74 | for (int i = 0; i < n; i++) {
|
---|
| 75 | calculator.Add(xs[i]);
|
---|
| 76 | }
|
---|
| 77 | double mean = calculator.Mean;
|
---|
| 78 | double variance = calculator.Variance;
|
---|
| 79 |
|
---|
[6880] | 80 | Assert.IsTrue(mean_alglib.IsAlmost(mean));
|
---|
| 81 | Assert.IsTrue(variance_alglib.IsAlmost(variance));
|
---|
[5574] | 82 | }
|
---|
| 83 | }
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | [TestMethod]
|
---|
| 87 | public void CalculatePearsonsRSquaredTest() {
|
---|
| 88 | System.Random random = new System.Random(31415);
|
---|
| 89 | int n = testData.GetLength(0);
|
---|
| 90 | int cols = testData.GetLength(1);
|
---|
| 91 | for (int c1 = 0; c1 < cols; c1++) {
|
---|
| 92 | for (int c2 = c1 + 1; c2 < cols; c2++) {
|
---|
| 93 | {
|
---|
| 94 | double c1Scale = random.NextDouble() * 1E7;
|
---|
| 95 | double c2Scale = random.NextDouble() * 1E7;
|
---|
| 96 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
| 97 | select testData[rows, c1] * c1Scale;
|
---|
| 98 | IEnumerable<double> y = from rows in Enumerable.Range(0, n)
|
---|
| 99 | select testData[rows, c2] * c2Scale;
|
---|
| 100 | double[] xs = x.ToArray();
|
---|
| 101 | double[] ys = y.ToArray();
|
---|
| 102 | double r2_alglib = alglib.pearsoncorrelation(xs, ys, n);
|
---|
| 103 | r2_alglib *= r2_alglib;
|
---|
| 104 |
|
---|
[5944] | 105 | var r2Calculator = new OnlinePearsonsRSquaredCalculator();
|
---|
[5574] | 106 | for (int i = 0; i < n; i++) {
|
---|
| 107 | r2Calculator.Add(xs[i], ys[i]);
|
---|
| 108 | }
|
---|
| 109 | double r2 = r2Calculator.RSquared;
|
---|
| 110 |
|
---|
[6880] | 111 | Assert.IsTrue(r2_alglib.IsAlmost(r2));
|
---|
[5574] | 112 | }
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 | }
|
---|
[6184] | 116 | [TestMethod]
|
---|
| 117 | public void CalculatePearsonsRSquaredOfConstantTest() {
|
---|
| 118 | System.Random random = new System.Random(31415);
|
---|
| 119 | int n = 12;
|
---|
| 120 | int cols = testData.GetLength(1);
|
---|
| 121 | for (int c1 = 0; c1 < cols; c1++) {
|
---|
| 122 | double c1Scale = random.NextDouble() * 1E7;
|
---|
| 123 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
| 124 | select testData[rows, c1] * c1Scale;
|
---|
[6738] | 125 | IEnumerable<double> y = (new List<double>() { 150494407424305.47 })
|
---|
[6184] | 126 | .Concat(Enumerable.Repeat(150494407424305.47, n - 1));
|
---|
| 127 | double[] xs = x.ToArray();
|
---|
| 128 | double[] ys = y.ToArray();
|
---|
| 129 | double r2_alglib = alglib.pearsoncorrelation(xs, ys, n);
|
---|
| 130 | r2_alglib *= r2_alglib;
|
---|
| 131 |
|
---|
| 132 | var r2Calculator = new OnlinePearsonsRSquaredCalculator();
|
---|
| 133 | for (int i = 0; i < n; i++) {
|
---|
| 134 | r2Calculator.Add(xs[i], ys[i]);
|
---|
| 135 | }
|
---|
| 136 | double r2 = r2Calculator.RSquared;
|
---|
| 137 |
|
---|
| 138 | Assert.AreEqual(r2_alglib.ToString(), r2.ToString());
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
[8660] | 141 |
|
---|
| 142 | [TestMethod]
|
---|
| 143 | public void CalculateHoeffdingsDTest() {
|
---|
| 144 | OnlineCalculatorError error;
|
---|
| 145 | // direct perfect dependency
|
---|
| 146 | var xs = new double[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
|
---|
| 147 | var ys = new double[] { 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
|
---|
| 148 | var d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
| 149 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
| 150 | Assert.AreEqual(d, 1.0, 1E-5);
|
---|
| 151 |
|
---|
| 152 | // perfect negative dependency
|
---|
| 153 | ys = xs.Select(x => -x).ToArray();
|
---|
| 154 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
| 155 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
| 156 | Assert.AreEqual(d, 1.0, 1E-5);
|
---|
| 157 |
|
---|
| 158 | // ties
|
---|
| 159 | xs = new double[] { 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 5.0, 5.0, 5.0 };
|
---|
| 160 | ys = new double[] { 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 5.0, 5.0, 6.0, 6.0, 6.0 };
|
---|
| 161 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
| 162 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
| 163 | Assert.AreEqual(d, 0.6783, 1E-5);
|
---|
| 164 |
|
---|
| 165 | // ties
|
---|
| 166 | xs = new double[] { 1.0, 1.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 6.0, 6.0 };
|
---|
| 167 | ys = xs.Select(x => x * x).ToArray();
|
---|
| 168 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
| 169 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
| 170 | Assert.AreEqual(d, 0.75, 1E-5);
|
---|
| 171 |
|
---|
| 172 | // degenerate
|
---|
| 173 | xs = new double[] { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
|
---|
| 174 | ys = new double[] { 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 };
|
---|
| 175 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
| 176 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
| 177 | Assert.AreEqual(d, -0.3516, 1E-4);
|
---|
| 178 |
|
---|
| 179 |
|
---|
| 180 | var normal = new HeuristicLab.Random.NormalDistributedRandom(new HeuristicLab.Random.MersenneTwister(31415), 0, 1);
|
---|
| 181 |
|
---|
| 182 | xs = Enumerable.Range(0, 1000).Select(i => normal.NextDouble()).ToArray();
|
---|
| 183 | ys = Enumerable.Range(0, 1000).Select(i => normal.NextDouble()).ToArray();
|
---|
| 184 |
|
---|
| 185 | // independent
|
---|
| 186 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
| 187 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
| 188 | Assert.AreEqual(d, -0.00023, 1E-5);
|
---|
| 189 |
|
---|
| 190 |
|
---|
| 191 | xs = Enumerable.Range(0, 1000).Select(i => normal.NextDouble()).ToArray();
|
---|
| 192 | ys = xs.Select(x => x * x).ToArray();
|
---|
| 193 |
|
---|
| 194 | d = HoeffdingsDependenceCalculator.Calculate(xs, ys, out error);
|
---|
| 195 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
| 196 | Assert.AreEqual(d, 0.25071, 1E-5);
|
---|
| 197 |
|
---|
| 198 | // symmetric?
|
---|
| 199 | d = HoeffdingsDependenceCalculator.Calculate(ys, xs, out error);
|
---|
| 200 | Assert.AreEqual(error, OnlineCalculatorError.None);
|
---|
| 201 | Assert.AreEqual(d, 0.25071, 1E-5);
|
---|
| 202 |
|
---|
| 203 | }
|
---|
[5574] | 204 | }
|
---|
| 205 | }
|
---|