Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationModel.cs @ 11297

Last change on this file since 11297 was 8660, checked in by gkronber, 12 years ago

#1847 merged r8205:8635 from trunk into branch

File size: 5.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis {
30  /// <summary>
31  /// Represents discriminant function classification data analysis models.
32  /// </summary>
33  [StorableClass]
34  [Item("DiscriminantFunctionClassificationModel", "Represents a classification model that uses a discriminant function and classification thresholds.")]
35  public abstract class DiscriminantFunctionClassificationModel : NamedItem, IDiscriminantFunctionClassificationModel {
36    [Storable]
37    private IRegressionModel model;
38
39    [Storable]
40    private double[] classValues;
41    public IEnumerable<double> ClassValues {
42      get { return (double[])classValues.Clone(); }
43      private set { classValues = value.ToArray(); }
44    }
45
46    [Storable]
47    private double[] thresholds;
48    public IEnumerable<double> Thresholds {
49      get { return (IEnumerable<double>)thresholds.Clone(); }
50      private set { thresholds = value.ToArray(); }
51    }
52
53    private IDiscriminantFunctionThresholdCalculator thresholdCalculator;
54    [Storable]
55    public IDiscriminantFunctionThresholdCalculator ThresholdCalculator {
56      get { return thresholdCalculator; }
57      private set { thresholdCalculator = value; }
58    }
59
60
61    [StorableConstructor]
62    protected DiscriminantFunctionClassificationModel(bool deserializing) : base(deserializing) { }
63    protected DiscriminantFunctionClassificationModel(DiscriminantFunctionClassificationModel original, Cloner cloner)
64      : base(original, cloner) {
65      model = cloner.Clone(original.model);
66      classValues = (double[])original.classValues.Clone();
67      thresholds = (double[])original.thresholds.Clone();
68    }
69
70    public DiscriminantFunctionClassificationModel(IRegressionModel model, IDiscriminantFunctionThresholdCalculator thresholdCalculator)
71      : base() {
72      this.name = ItemName;
73      this.description = ItemDescription;
74      this.model = model;
75      this.classValues = new double[0];
76      this.thresholds = new double[0];
77      this.thresholdCalculator = thresholdCalculator;
78    }
79
80    [StorableHook(HookType.AfterDeserialization)]
81    private void AfterDeserialization() {
82      if (ThresholdCalculator == null) ThresholdCalculator = new AccuracyMaximizationThresholdCalculator();
83    }
84
85    public void SetThresholdsAndClassValues(IEnumerable<double> thresholds, IEnumerable<double> classValues) {
86      var classValuesArr = classValues.ToArray();
87      var thresholdsArr = thresholds.ToArray();
88      if (thresholdsArr.Length != classValuesArr.Length) throw new ArgumentException();
89
90      this.classValues = classValuesArr;
91      this.thresholds = thresholdsArr;
92      OnThresholdsChanged(EventArgs.Empty);
93    }
94
95    public virtual void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable<int> rows) {
96      double[] classValues;
97      double[] thresholds;
98      var targetClassValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
99      var estimatedTrainingValues = GetEstimatedValues(problemData.Dataset, rows);
100      thresholdCalculator.Calculate(problemData, estimatedTrainingValues, targetClassValues, out classValues, out thresholds);
101      SetThresholdsAndClassValues(thresholds, classValues);
102    }
103
104
105    public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
106      return model.GetEstimatedValues(dataset, rows);
107    }
108
109    public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
110      if (!Thresholds.Any() && !ClassValues.Any()) throw new ArgumentException("No thresholds and class values were set for the current classification model.");
111      foreach (var x in GetEstimatedValues(dataset, rows)) {
112        int classIndex = 0;
113        // find first threshold value which is larger than x => class index = threshold index + 1
114        for (int i = 0; i < thresholds.Length; i++) {
115          if (x > thresholds[i]) classIndex++;
116          else break;
117        }
118        yield return classValues.ElementAt(classIndex - 1);
119      }
120    }
121    #region events
122    public event EventHandler ThresholdsChanged;
123    protected virtual void OnThresholdsChanged(EventArgs e) {
124      var listener = ThresholdsChanged;
125      if (listener != null) listener(this, e);
126    }
127    #endregion
128
129    public abstract IDiscriminantFunctionClassificationSolution CreateDiscriminantFunctionClassificationSolution(IClassificationProblemData problemData);
130    public abstract IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData);
131  }
132}
Note: See TracBrowser for help on using the repository browser.