1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | [StorableClass]
|
---|
31 | public abstract class ClassificationSolutionBase : DataAnalysisSolution, IClassificationSolution {
|
---|
32 | private const string TrainingAccuracyResultName = "Accuracy (training)";
|
---|
33 | private const string TestAccuracyResultName = "Accuracy (test)";
|
---|
34 | private const string TrainingNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (training)";
|
---|
35 | private const string TestNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (test)";
|
---|
36 |
|
---|
37 | public new IClassificationModel Model {
|
---|
38 | get { return (IClassificationModel)base.Model; }
|
---|
39 | protected set { base.Model = value; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public new IClassificationProblemData ProblemData {
|
---|
43 | get { return (IClassificationProblemData)base.ProblemData; }
|
---|
44 | set { base.ProblemData = value; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | #region Results
|
---|
48 | public double TrainingAccuracy {
|
---|
49 | get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
|
---|
50 | private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
|
---|
51 | }
|
---|
52 | public double TestAccuracy {
|
---|
53 | get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
|
---|
54 | private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
|
---|
55 | }
|
---|
56 | public double TrainingNormalizedGiniCoefficient {
|
---|
57 | get { return ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value; }
|
---|
58 | protected set { ((DoubleValue)this[TrainingNormalizedGiniCoefficientResultName].Value).Value = value; }
|
---|
59 | }
|
---|
60 | public double TestNormalizedGiniCoefficient {
|
---|
61 | get { return ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value; }
|
---|
62 | protected set { ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value = value; }
|
---|
63 | }
|
---|
64 | #endregion
|
---|
65 |
|
---|
66 | [StorableConstructor]
|
---|
67 | protected ClassificationSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
68 | protected ClassificationSolutionBase(ClassificationSolutionBase original, Cloner cloner)
|
---|
69 | : base(original, cloner) {
|
---|
70 | }
|
---|
71 | protected ClassificationSolutionBase(IClassificationModel model, IClassificationProblemData problemData)
|
---|
72 | : base(model, problemData) {
|
---|
73 | Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
74 | Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
75 | Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
|
---|
76 | Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
|
---|
77 | }
|
---|
78 |
|
---|
79 | [StorableHook(HookType.AfterDeserialization)]
|
---|
80 | private void AfterDeserialization() {
|
---|
81 | if (!this.ContainsKey(TrainingNormalizedGiniCoefficientResultName))
|
---|
82 | Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue()));
|
---|
83 | if (!this.ContainsKey(TestNormalizedGiniCoefficientResultName))
|
---|
84 | Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue()));
|
---|
85 | }
|
---|
86 |
|
---|
87 | protected void CalculateResults() {
|
---|
88 | double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
|
---|
89 | double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToArray();
|
---|
90 | double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
|
---|
91 | double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToArray();
|
---|
92 |
|
---|
93 | OnlineCalculatorError errorState;
|
---|
94 | double trainingAccuracy = OnlineAccuracyCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
|
---|
95 | if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
|
---|
96 | double testAccuracy = OnlineAccuracyCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
|
---|
97 | if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
|
---|
98 |
|
---|
99 | TrainingAccuracy = trainingAccuracy;
|
---|
100 | TestAccuracy = testAccuracy;
|
---|
101 |
|
---|
102 | double trainingNormalizedGini = NormalizedGiniCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState);
|
---|
103 | if (errorState != OnlineCalculatorError.None) trainingNormalizedGini = double.NaN;
|
---|
104 | double testNormalizedGini = NormalizedGiniCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState);
|
---|
105 | if (errorState != OnlineCalculatorError.None) testNormalizedGini = double.NaN;
|
---|
106 |
|
---|
107 | TrainingNormalizedGiniCoefficient = trainingNormalizedGini;
|
---|
108 | TestNormalizedGiniCoefficient = testNormalizedGini;
|
---|
109 | }
|
---|
110 |
|
---|
111 | public abstract IEnumerable<double> EstimatedClassValues { get; }
|
---|
112 | public abstract IEnumerable<double> EstimatedTrainingClassValues { get; }
|
---|
113 | public abstract IEnumerable<double> EstimatedTestClassValues { get; }
|
---|
114 |
|
---|
115 | public abstract IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows);
|
---|
116 | }
|
---|
117 | }
|
---|