1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
33 | [Item("SymbolicRegressionMoveEvaluator", "")]
|
---|
34 | [StorableClass]
|
---|
35 | public class SymbolicRegressionMoveEvaluator : SingleSuccessorOperator, ISymbolicRegressionMoveEvaluator {
|
---|
36 |
|
---|
37 | public override bool CanChangeName {
|
---|
38 | get { return false; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | public ILookupParameter<ChangeNodeTypeMove> MoveParameter {
|
---|
42 | get { return (ILookupParameter<ChangeNodeTypeMove>)Parameters["ChangeNodeTypeMove"]; }
|
---|
43 | }
|
---|
44 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
45 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public ILookupParameter<DoubleValue> MoveQualityParameter {
|
---|
49 | get { return (ILookupParameter<DoubleValue>)Parameters["MoveQuality"]; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator> EvaluatorParameter {
|
---|
53 | get { return (ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>)Parameters["Evaluator"]; }
|
---|
54 | }
|
---|
55 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
56 | get { return (ILookupParameter<IRegressionProblemData>)Parameters["ProblemData"]; }
|
---|
57 | }
|
---|
58 | public ILookupParameter<IntRange> FitnessCalculationPartitionParameter {
|
---|
59 | get { return (ILookupParameter<IntRange>)Parameters["FitnessCalculationPartition"]; }
|
---|
60 | }
|
---|
61 |
|
---|
62 | public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
63 | get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters["SymbolicExpressionTree"]; }
|
---|
64 | }
|
---|
65 | [StorableConstructor]
|
---|
66 | protected SymbolicRegressionMoveEvaluator(bool deserializing) : base(deserializing) { }
|
---|
67 | protected SymbolicRegressionMoveEvaluator(SymbolicRegressionMoveEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
68 | public SymbolicRegressionMoveEvaluator()
|
---|
69 | : base() {
|
---|
70 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality of a symbolic regression solution."));
|
---|
71 | Parameters.Add(new LookupParameter<DoubleValue>("MoveQuality", "The evaluated quality of a move on a symbolic regression solution."));
|
---|
72 | Parameters.Add(new LookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>("Evaluator", ""));
|
---|
73 | Parameters.Add(new LookupParameter<ChangeNodeTypeMove>("ChangeNodeTypeMove", ""));
|
---|
74 | Parameters.Add(new LookupParameter<IRegressionProblemData>("ProblemData", ""));
|
---|
75 | Parameters.Add(new LookupParameter<IntRange>("FitnessCalculationPartition", ""));
|
---|
76 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>("SymbolicExpressionTree", ""));
|
---|
77 | }
|
---|
78 |
|
---|
79 | public override IOperation Apply() {
|
---|
80 | var evaluator = EvaluatorParameter.ActualValue;
|
---|
81 | // clone the move and all contained objects to make sure that the items in the scope are untouched
|
---|
82 | var move = (ChangeNodeTypeMove)MoveParameter.ActualValue.Clone();
|
---|
83 | var oldNode = move.Parent.GetSubtree(move.SubtreeIndex);
|
---|
84 | var children = new List<ISymbolicExpressionTreeNode>(oldNode.Subtrees);
|
---|
85 | while (oldNode.SubtreeCount > 0) oldNode.RemoveSubtree(0);
|
---|
86 | var newNode = move.NewChild;
|
---|
87 | foreach (var c in children)
|
---|
88 | newNode.AddSubtree(c);
|
---|
89 |
|
---|
90 | move.Parent.RemoveSubtree(move.SubtreeIndex);
|
---|
91 | move.Parent.InsertSubtree(move.SubtreeIndex, newNode);
|
---|
92 |
|
---|
93 | var problemData = ProblemDataParameter.ActualValue;
|
---|
94 | IExecutionContext childContext = (IExecutionContext)ExecutionContext.CreateChildOperation(evaluator);
|
---|
95 |
|
---|
96 | var fitnessPartition = FitnessCalculationPartitionParameter.ActualValue;
|
---|
97 | var rows = Enumerable.Range(fitnessPartition.Start, fitnessPartition.End - fitnessPartition.Start);
|
---|
98 | var quality = evaluator.Evaluate(childContext, move.Tree, problemData, rows);
|
---|
99 |
|
---|
100 | MoveQualityParameter.ActualValue = new DoubleValue(quality);
|
---|
101 | return base.Apply();
|
---|
102 | }
|
---|
103 |
|
---|
104 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
105 | return new SymbolicRegressionMoveEvaluator(this, cloner);
|
---|
106 | }
|
---|
107 |
|
---|
108 |
|
---|
109 | }
|
---|
110 | }
|
---|