[7802] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 33 | [Item("SymbolicRegressionMoveEvaluator", "")]
|
---|
| 34 | [StorableClass]
|
---|
| 35 | public class SymbolicRegressionMoveEvaluator : SingleSuccessorOperator, ISymbolicRegressionMoveEvaluator {
|
---|
| 36 |
|
---|
| 37 | public override bool CanChangeName {
|
---|
| 38 | get { return false; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | public ILookupParameter<ChangeNodeTypeMove> MoveParameter {
|
---|
| 42 | get { return (ILookupParameter<ChangeNodeTypeMove>)Parameters["ChangeNodeTypeMove"]; }
|
---|
| 43 | }
|
---|
| 44 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
| 45 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public ILookupParameter<DoubleValue> MoveQualityParameter {
|
---|
| 49 | get { return (ILookupParameter<DoubleValue>)Parameters["MoveQuality"]; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | public ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator> EvaluatorParameter {
|
---|
| 53 | get { return (ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>)Parameters["Evaluator"]; }
|
---|
| 54 | }
|
---|
| 55 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 56 | get { return (ILookupParameter<IRegressionProblemData>)Parameters["ProblemData"]; }
|
---|
| 57 | }
|
---|
| 58 | public ILookupParameter<IntRange> FitnessCalculationPartitionParameter {
|
---|
| 59 | get { return (ILookupParameter<IntRange>)Parameters["FitnessCalculationPartition"]; }
|
---|
| 60 | }
|
---|
| 61 |
|
---|
[7832] | 62 | public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
| 63 | get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters["SymbolicExpressionTree"]; }
|
---|
[7802] | 64 | }
|
---|
| 65 | [StorableConstructor]
|
---|
| 66 | protected SymbolicRegressionMoveEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 67 | protected SymbolicRegressionMoveEvaluator(SymbolicRegressionMoveEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 68 | public SymbolicRegressionMoveEvaluator()
|
---|
| 69 | : base() {
|
---|
| 70 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality of a symbolic regression solution."));
|
---|
| 71 | Parameters.Add(new LookupParameter<DoubleValue>("MoveQuality", "The evaluated quality of a move on a symbolic regression solution."));
|
---|
| 72 | Parameters.Add(new LookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>("Evaluator", ""));
|
---|
| 73 | Parameters.Add(new LookupParameter<ChangeNodeTypeMove>("ChangeNodeTypeMove", ""));
|
---|
| 74 | Parameters.Add(new LookupParameter<IRegressionProblemData>("ProblemData", ""));
|
---|
| 75 | Parameters.Add(new LookupParameter<IntRange>("FitnessCalculationPartition", ""));
|
---|
[7832] | 76 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>("SymbolicExpressionTree", ""));
|
---|
[7802] | 77 | }
|
---|
| 78 |
|
---|
| 79 | public override IOperation Apply() {
|
---|
| 80 | var evaluator = EvaluatorParameter.ActualValue;
|
---|
| 81 | // clone the move and all contained objects to make sure that the items in the scope are untouched
|
---|
| 82 | var move = (ChangeNodeTypeMove)MoveParameter.ActualValue.Clone();
|
---|
| 83 | var oldNode = move.Parent.GetSubtree(move.SubtreeIndex);
|
---|
| 84 | var children = new List<ISymbolicExpressionTreeNode>(oldNode.Subtrees);
|
---|
| 85 | while (oldNode.SubtreeCount > 0) oldNode.RemoveSubtree(0);
|
---|
| 86 | var newNode = move.NewChild;
|
---|
| 87 | foreach (var c in children)
|
---|
| 88 | newNode.AddSubtree(c);
|
---|
| 89 |
|
---|
| 90 | move.Parent.RemoveSubtree(move.SubtreeIndex);
|
---|
| 91 | move.Parent.InsertSubtree(move.SubtreeIndex, newNode);
|
---|
| 92 |
|
---|
| 93 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 94 | IExecutionContext childContext = (IExecutionContext)ExecutionContext.CreateChildOperation(evaluator);
|
---|
| 95 |
|
---|
| 96 | var fitnessPartition = FitnessCalculationPartitionParameter.ActualValue;
|
---|
| 97 | var rows = Enumerable.Range(fitnessPartition.Start, fitnessPartition.End - fitnessPartition.Start);
|
---|
| 98 | var quality = evaluator.Evaluate(childContext, move.Tree, problemData, rows);
|
---|
| 99 |
|
---|
| 100 | MoveQualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 101 | return base.Apply();
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 105 | return new SymbolicRegressionMoveEvaluator(this, cloner);
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 |
|
---|
| 109 | }
|
---|
| 110 | }
|
---|