1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
31 | [StorableClass]
|
---|
32 | public abstract class SymbolicRegressionSingleObjectiveEvaluator : SymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>, ISymbolicRegressionSingleObjectiveEvaluator {
|
---|
33 | private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
|
---|
34 | public IFixedValueParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
35 | get { return (IFixedValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
36 | }
|
---|
37 | public bool ApplyLinearScaling {
|
---|
38 | get { return ApplyLinearScalingParameter.Value.Value; }
|
---|
39 | set { ApplyLinearScalingParameter.Value.Value = value; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | protected SymbolicRegressionSingleObjectiveEvaluator(bool deserializing) : base(deserializing) { }
|
---|
44 | protected SymbolicRegressionSingleObjectiveEvaluator(SymbolicRegressionSingleObjectiveEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
45 | protected SymbolicRegressionSingleObjectiveEvaluator()
|
---|
46 | : base() {
|
---|
47 | Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.", new BoolValue(true)));
|
---|
48 | ApplyLinearScalingParameter.Hidden = true;
|
---|
49 | }
|
---|
50 |
|
---|
51 | [StorableHook(HookType.AfterDeserialization)]
|
---|
52 | private void AfterDeserialization() {
|
---|
53 | if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
|
---|
54 | Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.", new BoolValue(false)));
|
---|
55 | ApplyLinearScalingParameter.Hidden = true;
|
---|
56 | }
|
---|
57 | }
|
---|
58 |
|
---|
59 | [ThreadStatic]
|
---|
60 | private static double[] cache;
|
---|
61 |
|
---|
62 | protected static void CalculateWithScaling(IEnumerable<double> targetValues, IEnumerable<double> estimatedValues,
|
---|
63 | double lowerEstimationLimit, double upperEstimationLimit,
|
---|
64 | IOnlineCalculator calculator, int maxRows) {
|
---|
65 | if (cache == null || cache.GetLength(0) < maxRows) {
|
---|
66 | cache = new double[maxRows];
|
---|
67 | }
|
---|
68 |
|
---|
69 | //calculate linear scaling
|
---|
70 | //the static methods of the calculator could not be used as it performs a check if the enumerators have an equal amount of elements
|
---|
71 | //this is not true if the cache is used
|
---|
72 | int i = 0;
|
---|
73 | var linearScalingCalculator = new OnlineLinearScalingParameterCalculator();
|
---|
74 | var targetValuesEnumerator = targetValues.GetEnumerator();
|
---|
75 | var estimatedValuesEnumerator = estimatedValues.GetEnumerator();
|
---|
76 | while (targetValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext()) {
|
---|
77 | double target = targetValuesEnumerator.Current;
|
---|
78 | double estimated = estimatedValuesEnumerator.Current;
|
---|
79 | cache[i] = estimated;
|
---|
80 | linearScalingCalculator.Add(estimated, target);
|
---|
81 | i++;
|
---|
82 | }
|
---|
83 | if (linearScalingCalculator.ErrorState == OnlineCalculatorError.None && (targetValuesEnumerator.MoveNext() || estimatedValuesEnumerator.MoveNext()))
|
---|
84 | throw new ArgumentException("Number of elements in target and estimated values enumeration do not match.");
|
---|
85 |
|
---|
86 | double alpha = linearScalingCalculator.Alpha;
|
---|
87 | double beta = linearScalingCalculator.Beta;
|
---|
88 | if (linearScalingCalculator.ErrorState != OnlineCalculatorError.None) {
|
---|
89 | alpha = 0.0;
|
---|
90 | beta = 1.0;
|
---|
91 | }
|
---|
92 |
|
---|
93 | //calculate the quality by using the passed online calculator
|
---|
94 | targetValuesEnumerator = targetValues.GetEnumerator();
|
---|
95 | var scaledBoundedEstimatedValuesEnumerator = Enumerable.Range(0, i).Select(x => cache[x] * beta + alpha)
|
---|
96 | .LimitToRange(lowerEstimationLimit, upperEstimationLimit).GetEnumerator();
|
---|
97 |
|
---|
98 | while (targetValuesEnumerator.MoveNext() & scaledBoundedEstimatedValuesEnumerator.MoveNext()) {
|
---|
99 | calculator.Add(targetValuesEnumerator.Current, scaledBoundedEstimatedValuesEnumerator.Current);
|
---|
100 | }
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|