1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
35 | [Item("ReplaceBranchMultiMoveGenerator", "")]
|
---|
36 | [StorableClass]
|
---|
37 | public class ReplaceBranchMultiMoveGenerator : SingleSuccessorOperator, IStochasticOperator, ISymbolicExpressionTreeMoveOperator, IMultiMoveGenerator,
|
---|
38 | ISymbolicDataAnalysisInterpreterOperator, ISymbolicExpressionTreeGrammarBasedOperator {
|
---|
39 | public ILookupParameter<IRandom> RandomParameter {
|
---|
40 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
41 | }
|
---|
42 | public IValueLookupParameter<IntValue> SampleSizeParameter {
|
---|
43 | get { return (IValueLookupParameter<IntValue>)Parameters["SampleSize"]; }
|
---|
44 | }
|
---|
45 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
46 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters["Interpreter"]; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public IValueLookupParameter<ISymbolicExpressionGrammar> SymbolicExpressionTreeGrammarParameter {
|
---|
50 | get { return (IValueLookupParameter<ISymbolicExpressionGrammar>)Parameters["Grammar"]; }
|
---|
51 | }
|
---|
52 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
53 | get { return (ILookupParameter<IRegressionProblemData>)Parameters["ProblemData"]; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | public IntValue SampleSize {
|
---|
57 | get { return SampleSizeParameter.Value; }
|
---|
58 | set { SampleSizeParameter.Value = value; }
|
---|
59 | }
|
---|
60 | public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
61 | get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters["SymbolicExpressionTree"]; }
|
---|
62 | }
|
---|
63 | public ILookupParameter<ReplaceBranchMove> ReplaceBranchMoveParameter {
|
---|
64 | get { return (LookupParameter<ReplaceBranchMove>)Parameters["ReplaceBranchMove"]; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public IValueParameter<IntValue> ReplacementBranchesPoolSize {
|
---|
68 | get { return (IValueParameter<IntValue>)Parameters["ReplacementBranchesPoolSize"]; }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public IValueParameter<IntValue> MaxReplacementBranchLength {
|
---|
72 | get { return (IValueParameter<IntValue>)Parameters["MaxReplacementBranchLength"]; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | public IValueParameter<IntValue> MaxReplacementBranchDepth {
|
---|
76 | get { return (IValueParameter<IntValue>)Parameters["MaxReplacementBranchDepth"]; }
|
---|
77 | }
|
---|
78 |
|
---|
79 | protected ScopeParameter CurrentScopeParameter {
|
---|
80 | get { return (ScopeParameter)Parameters["CurrentScope"]; }
|
---|
81 | }
|
---|
82 |
|
---|
83 | private IList<ISymbolicExpressionTree> trees;
|
---|
84 | private IList<double[]> treeOutput;
|
---|
85 |
|
---|
86 | [StorableConstructor]
|
---|
87 | protected ReplaceBranchMultiMoveGenerator(bool deserializing) : base(deserializing) { }
|
---|
88 | protected ReplaceBranchMultiMoveGenerator(ReplaceBranchMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { }
|
---|
89 | public ReplaceBranchMultiMoveGenerator()
|
---|
90 | : base() {
|
---|
91 | Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator."));
|
---|
92 | Parameters.Add(new ValueLookupParameter<IntValue>("SampleSize", "The number of moves to generate."));
|
---|
93 |
|
---|
94 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>("SymbolicExpressionTree", "The symbolic expression tree for which moves should be generated."));
|
---|
95 | Parameters.Add(new LookupParameter<ReplaceBranchMove>("ReplaceBranchMove", "The moves that should be generated in subscopes."));
|
---|
96 | Parameters.Add(new ScopeParameter("CurrentScope", "The current scope where the moves should be added as subscopes."));
|
---|
97 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionGrammar>("Grammar"));
|
---|
98 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>("Interpreter"));
|
---|
99 | Parameters.Add(new LookupParameter<IRegressionProblemData>("ProblemData"));
|
---|
100 | Parameters.Add(new ValueParameter<IntValue>("ReplacementBranchesPoolSize", new IntValue(10000)));
|
---|
101 | Parameters.Add(new ValueParameter<IntValue>("MaxReplacementBranchLength", new IntValue(8)));
|
---|
102 | Parameters.Add(new ValueParameter<IntValue>("MaxReplacementBranchDepth", new IntValue(4)));
|
---|
103 | }
|
---|
104 |
|
---|
105 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
106 | return new ReplaceBranchMultiMoveGenerator(this, cloner);
|
---|
107 | }
|
---|
108 |
|
---|
109 | public override void ClearState() {
|
---|
110 | trees = null;
|
---|
111 | treeOutput = null;
|
---|
112 | base.ClearState();
|
---|
113 | }
|
---|
114 |
|
---|
115 | public override IOperation Apply() {
|
---|
116 | var random = RandomParameter.ActualValue;
|
---|
117 | if (trees == null || treeOutput == null) {
|
---|
118 | InitializeOperator();
|
---|
119 | }
|
---|
120 |
|
---|
121 | var tree = SymbolicExpressionTreeParameter.ActualValue;
|
---|
122 |
|
---|
123 | string moveParameterName = ReplaceBranchMoveParameter.ActualName;
|
---|
124 | var moveScopes = new List<Scope>();
|
---|
125 | int n = SampleSizeParameter.ActualValue.Value;
|
---|
126 |
|
---|
127 | var moves = GenerateMoves(tree, random, n);
|
---|
128 |
|
---|
129 | foreach (var m in moves) {
|
---|
130 | var moveScope = new Scope(moveScopes.Count.ToString());
|
---|
131 | moveScope.Variables.Add(new HeuristicLab.Core.Variable(moveParameterName, m));
|
---|
132 | moveScopes.Add(moveScope);
|
---|
133 | }
|
---|
134 | CurrentScopeParameter.ActualValue.SubScopes.AddRange(moveScopes);
|
---|
135 | return base.Apply();
|
---|
136 | }
|
---|
137 |
|
---|
138 | public IEnumerable<ReplaceBranchMove> GenerateMoves(ISymbolicExpressionTree tree, IRandom random, int n) {
|
---|
139 | int count = 0;
|
---|
140 | var possibleChildren = (from parent in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
141 | from i in Enumerable.Range(0, parent.SubtreeCount)
|
---|
142 | let currentChild = parent.GetSubtree(i)
|
---|
143 | select new { parent, i }).ToArray();
|
---|
144 |
|
---|
145 | var root = (new ProgramRootSymbol()).CreateTreeNode();
|
---|
146 | var start = (new StartSymbol()).CreateTreeNode();
|
---|
147 | root.AddSubtree(start);
|
---|
148 | var t = new SymbolicExpressionTree(root);
|
---|
149 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
150 | var ds = ProblemDataParameter.ActualValue.Dataset;
|
---|
151 | var rows = ProblemDataParameter.ActualValue.TrainingIndizes;
|
---|
152 |
|
---|
153 | while (count < n) {
|
---|
154 | // select a random replacement point
|
---|
155 | var selected = possibleChildren[random.Next(possibleChildren.Length)];
|
---|
156 | // evaluate
|
---|
157 | start.AddSubtree(selected.parent.GetSubtree(selected.i));
|
---|
158 | var output = interpreter.GetSymbolicExpressionTreeValues(t, ds, rows).ToArray();
|
---|
159 | start.RemoveSubtree(0);
|
---|
160 |
|
---|
161 | var bestTrees = new SortedList<double, Tuple<ISymbolicExpressionTree, double[]>>();
|
---|
162 | double bestSimilarity = 0.0;
|
---|
163 | // iterate over the whole pool of branches for replacement
|
---|
164 | for (int i = 0; i < trees.Count; i++) {
|
---|
165 | // if the branch is allowed in the selected point
|
---|
166 | if (tree.Root.Grammar.IsAllowedChildSymbol(selected.parent.Symbol, trees[i].Root.GetSubtree(0).GetSubtree(0).Symbol, selected.i)) {
|
---|
167 | OnlineCalculatorError error;
|
---|
168 | // calculate the similarity
|
---|
169 | double similarity = OnlinePearsonsRSquaredCalculator.Calculate(output, treeOutput[i], out error);
|
---|
170 | if (error != OnlineCalculatorError.None) similarity = 0.0;
|
---|
171 |
|
---|
172 | // if we found a new bestSimilarity then keep the replacement branch in a sorted list (keep maximally the 30 best for this replacement point)
|
---|
173 | if (similarity > bestSimilarity && !similarity.IsAlmost(1.0)) {
|
---|
174 | bestSimilarity = similarity;
|
---|
175 | bestTrees.Add(similarity, Tuple.Create(trees[i], treeOutput[i]));
|
---|
176 | if (bestTrees.Count > 30)
|
---|
177 | bestTrees.RemoveAt(bestTrees.Count - 1);
|
---|
178 | }
|
---|
179 | }
|
---|
180 | }
|
---|
181 | // did not find a move better than similarity 0.0 => create a move to replace it with a random branch
|
---|
182 | // this is necessary to make it possible to replace branches that evaluate to NaN or infinity
|
---|
183 | if (bestTrees.Count == 0) {
|
---|
184 | int r = random.Next(trees.Count);
|
---|
185 | bestTrees.Add(0.0, Tuple.Create(trees[r], treeOutput[r]));
|
---|
186 | }
|
---|
187 | // yield moves (we need to add linear scaling parameters for the inserted tree)
|
---|
188 | foreach (var pair in bestTrees.Values) {
|
---|
189 | yield return
|
---|
190 | new ReplaceBranchMove(tree, selected.parent, selected.i, pair.Item1.Root.GetSubtree(0).GetSubtree(0), output, pair.Item2);
|
---|
191 | count++;
|
---|
192 | }
|
---|
193 | }
|
---|
194 | }
|
---|
195 |
|
---|
196 | private void InitializeOperator() {
|
---|
197 | // init locally and set only at the end in case of exceptions
|
---|
198 | var trees = new List<ISymbolicExpressionTree>();
|
---|
199 | var treeOutput = new List<double[]>();
|
---|
200 | var random = RandomParameter.ActualValue;
|
---|
201 | var g = SymbolicExpressionTreeGrammarParameter.ActualValue;
|
---|
202 | var constSym = g.Symbols.Single(s => s is Constant);
|
---|
203 | // temporarily disable constants
|
---|
204 | double oldConstFreq = constSym.InitialFrequency;
|
---|
205 | constSym.InitialFrequency = 0.0;
|
---|
206 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
207 | var ds = ProblemDataParameter.ActualValue.Dataset;
|
---|
208 | var rows = ProblemDataParameter.ActualValue.TrainingIndizes;
|
---|
209 | // create pool of random branches for replacement (no constants)
|
---|
210 | // and evaluate the output
|
---|
211 | // only keep trees if the output does not contain invalid values
|
---|
212 | var n = ReplacementBranchesPoolSize.Value.Value;
|
---|
213 | while (trees.Count < n) {
|
---|
214 | var t = ProbabilisticTreeCreator.Create(random, g, MaxReplacementBranchLength.Value.Value, MaxReplacementBranchDepth.Value.Value);
|
---|
215 | var output = interpreter.GetSymbolicExpressionTreeValues(t, ds, rows);
|
---|
216 | if (!output.Any(x => double.IsInfinity(x) || double.IsNaN(x))) {
|
---|
217 | trees.Add(t);
|
---|
218 | treeOutput.Add(output.ToArray());
|
---|
219 | }
|
---|
220 | }
|
---|
221 | // enable constants again
|
---|
222 | constSym.InitialFrequency = oldConstFreq;
|
---|
223 | this.trees = trees;
|
---|
224 | this.treeOutput = treeOutput;
|
---|
225 | }
|
---|
226 |
|
---|
227 | }
|
---|
228 | }
|
---|