Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicClassificationModel.cs @ 10554

Last change on this file since 10554 was 8660, checked in by gkronber, 12 years ago

#1847 merged r8205:8635 from trunk into branch

File size: 6.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
29  /// <summary>
30  /// Represents a symbolic classification model
31  /// </summary>
32  [StorableClass]
33  [Item(Name = "SymbolicClassificationModel", Description = "Represents a symbolic classification model.")]
34  public abstract class
35    SymbolicClassificationModel : SymbolicDataAnalysisModel, ISymbolicClassificationModel {
36    [Storable]
37    private double lowerEstimationLimit;
38    public double LowerEstimationLimit { get { return lowerEstimationLimit; } }
39    [Storable]
40    private double upperEstimationLimit;
41    public double UpperEstimationLimit { get { return upperEstimationLimit; } }
42
43    [StorableConstructor]
44    protected SymbolicClassificationModel(bool deserializing) : base(deserializing) { }
45    protected SymbolicClassificationModel(SymbolicClassificationModel original, Cloner cloner)
46      : base(original, cloner) {
47      lowerEstimationLimit = original.lowerEstimationLimit;
48      upperEstimationLimit = original.upperEstimationLimit;
49    }
50    protected SymbolicClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
51      : base(tree, interpreter) {
52      this.lowerEstimationLimit = lowerEstimationLimit;
53      this.upperEstimationLimit = upperEstimationLimit;
54    }
55
56    public abstract IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows);
57    public abstract void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable<int> rows);
58
59    public abstract ISymbolicClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData);
60
61    IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
62      return CreateClassificationSolution(problemData);
63    }
64
65    #region scaling
66    public static void Scale(ISymbolicClassificationModel model, IClassificationProblemData problemData) {
67      var dataset = problemData.Dataset;
68      var targetVariable = problemData.TargetVariable;
69      var rows = problemData.TrainingIndices;
70      var estimatedValues = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset, rows);
71      var targetValues = dataset.GetDoubleValues(targetVariable, rows);
72      double alpha;
73      double beta;
74      OnlineCalculatorError errorState;
75      OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta, out errorState);
76      if (errorState != OnlineCalculatorError.None) return;
77
78      ConstantTreeNode alphaTreeNode = null;
79      ConstantTreeNode betaTreeNode = null;
80      // check if model has been scaled previously by analyzing the structure of the tree
81      var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);
82      if (startNode.GetSubtree(0).Symbol is Addition) {
83        var addNode = startNode.GetSubtree(0);
84        if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
85          alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
86          var mulNode = addNode.GetSubtree(0);
87          if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
88            betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
89          }
90        }
91      }
92      // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
93      if (alphaTreeNode != null && betaTreeNode != null) {
94        betaTreeNode.Value *= beta;
95        alphaTreeNode.Value *= beta;
96        alphaTreeNode.Value += alpha;
97      } else {
98        var mainBranch = startNode.GetSubtree(0);
99        startNode.RemoveSubtree(0);
100        var scaledMainBranch = MakeSum(MakeProduct(mainBranch, beta), alpha);
101        startNode.AddSubtree(scaledMainBranch);
102      }
103    }
104
105    private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
106      if (alpha.IsAlmost(0.0)) {
107        return treeNode;
108      } else {
109        var addition = new Addition();
110        var node = addition.CreateTreeNode();
111        var alphaConst = MakeConstant(alpha);
112        node.AddSubtree(treeNode);
113        node.AddSubtree(alphaConst);
114        return node;
115      }
116    }
117
118    private static ISymbolicExpressionTreeNode MakeProduct(ISymbolicExpressionTreeNode treeNode, double beta) {
119      if (beta.IsAlmost(1.0)) {
120        return treeNode;
121      } else {
122        var multipliciation = new Multiplication();
123        var node = multipliciation.CreateTreeNode();
124        var betaConst = MakeConstant(beta);
125        node.AddSubtree(treeNode);
126        node.AddSubtree(betaConst);
127        return node;
128      }
129    }
130
131    private static ISymbolicExpressionTreeNode MakeConstant(double c) {
132      var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
133      node.Value = c;
134      return node;
135    }
136    #endregion
137  }
138}
Note: See TracBrowser for help on using the repository browser.