Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer.cs @ 10015

Last change on this file since 10015 was 8660, checked in by gkronber, 12 years ago

#1847 merged r8205:8635 from trunk into branch

File size: 5.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
26using HeuristicLab.Parameters;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
30  /// <summary>
31  /// An operator that analyzes the validation best symbolic classification solution for single objective symbolic classification problems.
32  /// </summary>
33  [Item("SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer", "An operator that analyzes the validation best symbolic classification solution for single objective symbolic classification problems.")]
34  [StorableClass]
35  public sealed class SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationBestSolutionAnalyzer<ISymbolicClassificationSolution, ISymbolicClassificationSingleObjectiveEvaluator, IClassificationProblemData>,
36  ISymbolicDataAnalysisBoundedOperator, ISymbolicClassificationModelCreatorOperator {
37    private const string EstimationLimitsParameterName = "EstimationLimits";
38    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
39    private const string ModelCreatorParameterName = "ModelCreator";
40
41    #region parameter properties
42    public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
43      get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
44    }
45    public IValueParameter<BoolValue> ApplyLinearScalingParameter {
46      get { return (IValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
47    }
48    public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
49      get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
50    }
51    ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter {
52      get { return ModelCreatorParameter; }
53    }
54    #endregion
55
56    #region properties
57    public BoolValue ApplyLinearScaling {
58      get { return ApplyLinearScalingParameter.Value; }
59    }
60    #endregion
61    [StorableConstructor]
62    private SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
63    private SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer(SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
64    public SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer()
65      : base() {
66      Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model."));
67      Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic classification solution should be linearly scaled.", new BoolValue(false)));
68      Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
69    }
70    public override IDeepCloneable Clone(Cloner cloner) {
71      return new SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer(this, cloner);
72    }
73
74    [StorableHook(HookType.AfterDeserialization)]
75    private void AfterDeserialization() {
76      if (!Parameters.ContainsKey(ModelCreatorParameterName))
77        Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
78    }
79
80    protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
81      var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
82      if (ApplyLinearScaling.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue);
83
84      model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices);
85      return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());
86    }
87  }
88}
Note: See TracBrowser for help on using the repository browser.