Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GP-MoveOperators/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceMaternIso.cs @ 10820

Last change on this file since 10820 was 8612, checked in by gkronber, 12 years ago

#1902 implemented all mean and covariance functions with parameters as ParameterizedNamedItems

File size: 6.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Algorithms.DataAnalysis {
32  [StorableClass]
33  [Item(Name = "CovarianceMaternIso",
34    Description = "Matern covariance function for Gaussian processes.")]
35  public sealed class CovarianceMaternIso : ParameterizedNamedItem, ICovarianceFunction {
36    [Storable]
37    private double inverseLength;
38    [Storable]
39    private readonly HyperParameter<DoubleValue> inverseLengthParameter;
40    public IValueParameter<DoubleValue> InverseLengthParameter {
41      get { return inverseLengthParameter; }
42    }
43
44    [Storable]
45    private double sf2;
46    [Storable]
47    private readonly HyperParameter<DoubleValue> scaleParameter;
48    public IValueParameter<DoubleValue> ScaleParameter {
49      get { return scaleParameter; }
50    }
51
52    [Storable]
53    private int d;
54    [Storable]
55    private readonly ConstrainedValueParameter<IntValue> dParameter;
56    public IConstrainedValueParameter<IntValue> DParameter {
57      get { return dParameter; }
58    }
59
60
61    [StorableConstructor]
62    private CovarianceMaternIso(bool deserializing)
63      : base(deserializing) {
64    }
65
66    private CovarianceMaternIso(CovarianceMaternIso original, Cloner cloner)
67      : base(original, cloner) {
68      this.scaleParameter = cloner.Clone(original.scaleParameter);
69      this.sf2 = original.sf2;
70      this.inverseLengthParameter = cloner.Clone(original.inverseLengthParameter);
71      this.inverseLength = original.inverseLength;
72      this.dParameter = cloner.Clone(original.dParameter);
73      this.d = original.d;
74      RegisterEvents();
75    }
76
77    public CovarianceMaternIso()
78      : base() {
79      Name = ItemName;
80      Description = ItemDescription;
81
82      inverseLengthParameter = new HyperParameter<DoubleValue>("InverseLength", "The inverse length parameter of the isometric Matern covariance function.");
83      scaleParameter = new HyperParameter<DoubleValue>("Scale", "The scale parameter of the isometric Matern covariance function.");
84      var validDValues = new ItemSet<IntValue>();
85      validDValues.Add((IntValue)new IntValue(1).AsReadOnly());
86      validDValues.Add((IntValue)new IntValue(3).AsReadOnly());
87      validDValues.Add((IntValue)new IntValue(5).AsReadOnly());
88      dParameter = new ConstrainedValueParameter<IntValue>("D", "The d parameter (allowed values: 1, 3, or 5) of the isometric Matern covariance function.", validDValues, validDValues.First());
89      d = dParameter.Value.Value;
90
91      Parameters.Add(inverseLengthParameter);
92      Parameters.Add(scaleParameter);
93      Parameters.Add(dParameter);
94
95      RegisterEvents();
96    }
97
98    [StorableHook(HookType.AfterDeserialization)]
99    private void AfterDeserialization() {
100      RegisterEvents();
101    }
102
103    public override IDeepCloneable Clone(Cloner cloner) {
104      return new CovarianceMaternIso(this, cloner);
105    }
106
107    // caching
108    private void RegisterEvents() {
109      Util.AttachValueChangeHandler<DoubleValue, double>(inverseLengthParameter, () => { inverseLength = inverseLengthParameter.Value.Value; });
110      Util.AttachValueChangeHandler<DoubleValue, double>(scaleParameter, () => { sf2 = scaleParameter.Value.Value; });
111      Util.AttachValueChangeHandler<IntValue, int>(dParameter, () => { d = dParameter.Value.Value; });
112    }
113
114    public int GetNumberOfParameters(int numberOfVariables) {
115      return
116        (inverseLengthParameter.Fixed ? 0 : 1) +
117        (scaleParameter.Fixed ? 0 : 1);
118    }
119
120    public void SetParameter(double[] hyp) {
121      int i = 0;
122      if (!inverseLengthParameter.Fixed) {
123        inverseLengthParameter.SetValue(new DoubleValue(1.0 / Math.Exp(hyp[i])));
124        i++;
125      }
126      if (!scaleParameter.Fixed) {
127        scaleParameter.SetValue(new DoubleValue(Math.Exp(2 * hyp[i])));
128        i++;
129      }
130      if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceMaternIso", "hyp");
131    }
132
133
134    private double m(double t) {
135      double f;
136      switch (d) {
137        case 1: { f = 1; break; }
138        case 3: { f = 1 + t; break; }
139        case 5: { f = 1 + t * (1 + t / 3.0); break; }
140        default: throw new InvalidOperationException();
141      }
142      return f * Math.Exp(-t);
143    }
144
145    private double dm(double t) {
146      double df;
147      switch (d) {
148        case 1: { df = 1; break; }
149        case 3: { df = t; break; }
150        case 5: { df = t * (1 + t) / 3.0; break; }
151        default: throw new InvalidOperationException();
152      }
153      return df * t * Math.Exp(-t);
154    }
155
156    public double GetCovariance(double[,] x, int i, int j) {
157      double dist = i == j
158                   ? 0.0
159                   : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength));
160      return sf2 * m(dist);
161    }
162
163    public IEnumerable<double> GetGradient(double[,] x, int i, int j) {
164      double dist = i == j
165                   ? 0.0
166                   : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength));
167
168      yield return sf2 * dm(dist);
169      yield return 2 * sf2 * m(dist);
170    }
171
172    public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j) {
173      double dist = Math.Sqrt(Util.SqrDist(x, i, xt, j, Math.Sqrt(d) * inverseLength));
174      return sf2 * m(dist);
175    }
176  }
177}
Note: See TracBrowser for help on using the repository browser.