Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GP-MoveOperators/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceLinearArd.cs @ 9844

Last change on this file since 9844 was 8612, checked in by gkronber, 12 years ago

#1902 implemented all mean and covariance functions with parameters as ParameterizedNamedItems

File size: 4.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29
30namespace HeuristicLab.Algorithms.DataAnalysis {
31  [StorableClass]
32  [Item(Name = "CovarianceLinearArd",
33    Description = "Linear covariance function with automatic relevance determination for Gaussian processes.")]
34  public sealed class CovarianceLinearArd : ParameterizedNamedItem, ICovarianceFunction {
35    [Storable]
36    private double[] inverseLength;
37    [Storable]
38    private readonly HyperParameter<DoubleArray> inverseLengthParameter;
39    public IValueParameter<DoubleArray> InverseLengthParameter {
40      get { return inverseLengthParameter; }
41    }
42
43    [StorableConstructor]
44    private CovarianceLinearArd(bool deserializing) : base(deserializing) { }
45    private CovarianceLinearArd(CovarianceLinearArd original, Cloner cloner)
46      : base(original, cloner) {
47      inverseLengthParameter = cloner.Clone(original.inverseLengthParameter);
48      if (original.inverseLength != null) {
49        this.inverseLength = new double[original.inverseLength.Length];
50        Array.Copy(original.inverseLength, inverseLength, inverseLength.Length);
51      }
52
53      RegisterEvents();
54    }
55    public CovarianceLinearArd()
56      : base() {
57      Name = ItemName;
58      Description = ItemDescription;
59
60      inverseLengthParameter = new HyperParameter<DoubleArray>("InverseLength",
61                                                               "The inverse length parameter for ARD.");
62      Parameters.Add(inverseLengthParameter);
63      RegisterEvents();
64    }
65
66    [StorableHook(HookType.AfterDeserialization)]
67    private void AfterDeserialization() {
68      RegisterEvents();
69    }
70
71    public override IDeepCloneable Clone(Cloner cloner) {
72      return new CovarianceLinearArd(this, cloner);
73    }
74
75    // caching
76    private void RegisterEvents() {
77      Util.AttachArrayChangeHandler<DoubleArray, double>(inverseLengthParameter, () => { inverseLength = inverseLengthParameter.Value.ToArray(); });
78    }
79
80
81    public int GetNumberOfParameters(int numberOfVariables) {
82      if (!inverseLengthParameter.Fixed)
83        return numberOfVariables;
84      else
85        return 0;
86    }
87
88    public void SetParameter(double[] hyp) {
89      if (!inverseLengthParameter.Fixed && hyp.Length > 0) {
90        inverseLengthParameter.SetValue(new DoubleArray(hyp.Select(e => 1.0 / Math.Exp(e)).ToArray()));
91      } else throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceLinearArd", "hyp");
92    }
93
94    public double GetCovariance(double[,] x, int i, int j) {
95      return Util.ScalarProd(x, i, j, inverseLength);
96    }
97
98    public IEnumerable<double> GetGradient(double[,] x, int i, int j) {
99      for (int k = 0; k < inverseLength.Length; k++) {
100        yield return -2.0 * x[i, k] * x[j, k] * inverseLength[k] * inverseLength[k];
101      }
102    }
103
104    public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j) {
105      return Util.ScalarProd(x, i, xt, j, inverseLength);
106    }
107  }
108}
Note: See TracBrowser for help on using the repository browser.