[2] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Functions;
|
---|
| 30 | using HeuristicLab.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.StructureIdentification {
|
---|
[128] | 33 | public class MeanSquaredErrorEvaluator : GPEvaluatorBase {
|
---|
[2] | 34 | public override string Description {
|
---|
[128] | 35 | get {
|
---|
[142] | 36 | return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates the mean-squared-error
|
---|
[128] | 37 | for the estimated values vs. the real values of 'TargetVariable'.";
|
---|
| 38 | }
|
---|
[2] | 39 | }
|
---|
| 40 |
|
---|
| 41 | public MeanSquaredErrorEvaluator()
|
---|
| 42 | : base() {
|
---|
| 43 | }
|
---|
| 44 |
|
---|
[142] | 45 | public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
|
---|
[2] | 46 | double errorsSquaredSum = 0;
|
---|
[128] | 47 | double targetMean = dataset.GetMean(targetVariable);
|
---|
| 48 | for(int sample = 0; sample < dataset.Rows; sample++) {
|
---|
[143] | 49 |
|
---|
[142] | 50 | double estimated = functionTree.Evaluate(dataset, sample);
|
---|
[2] | 51 | double original = dataset.GetValue(sample, targetVariable);
|
---|
| 52 | if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
| 53 | estimated = targetMean + maximumPunishment;
|
---|
| 54 | } else if(estimated > targetMean + maximumPunishment) {
|
---|
| 55 | estimated = targetMean + maximumPunishment;
|
---|
| 56 | } else if(estimated < targetMean - maximumPunishment) {
|
---|
| 57 | estimated = targetMean - maximumPunishment;
|
---|
| 58 | }
|
---|
| 59 | double error = estimated - original;
|
---|
| 60 | errorsSquaredSum += error * error;
|
---|
| 61 | }
|
---|
[128] | 62 | errorsSquaredSum /= dataset.Rows;
|
---|
[2] | 63 | if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
|
---|
| 64 | errorsSquaredSum = double.MaxValue;
|
---|
| 65 | }
|
---|
[128] | 66 | return errorsSquaredSum;
|
---|
[2] | 67 | }
|
---|
| 68 | }
|
---|
| 69 | }
|
---|