Free cookie consent management tool by TermsFeed Policy Generator

source: branches/FunctionsAndStructIdRefactoring/HeuristicLab.StructureIdentification/Evaluation/EarlyStoppingMeanSquaredErrorEvaluator.cs @ 152

Last change on this file since 152 was 142, checked in by gkronber, 17 years ago

Created a branch for refactoring functions and structId. Largest change: splitting IFunction/FunctionBase into two classes, one for the function and one for the treenode+local variables. _work in progress_

File size: 3.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class EarlyStoppingMeanSquaredErrorEvaluator : MeanSquaredErrorEvaluator {
34    public override string Description {
35      get {
36        return @"Evaluates 'FunctionTree' for all samples of the dataset and calculates the mean-squared-error
37for the estimated values vs. the real values of 'TargetVariable'.
38This operator stops the computation as soon as an upper limit for the mean-squared-error is reached.";
39      }
40    }
41
42    public EarlyStoppingMeanSquaredErrorEvaluator()
43      : base() {
44      AddVariableInfo(new VariableInfo("QualityLimit", "The upper limit of the MSE which is used as early stopping criterion.", typeof(DoubleData), VariableKind.In));
45    }
46
47    public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
48      double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, false).Data;
49      double errorsSquaredSum = 0;
50      double targetMean = dataset.GetMean(targetVariable);
51      for(int sample = 0; sample < dataset.Rows; sample++) {
52        double estimated = functionTree.Evaluate(dataset, sample);
53        double original = dataset.GetValue(sample, targetVariable);
54        if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
55          estimated = targetMean + maximumPunishment;
56        } else if(estimated > targetMean + maximumPunishment) {
57          estimated = targetMean + maximumPunishment;
58        } else if(estimated < targetMean - maximumPunishment) {
59          estimated = targetMean - maximumPunishment;
60        }
61        double error = estimated - original;
62        errorsSquaredSum += error * error;
63
64        // check the limit and stop as soon as we hit the limit
65        if(errorsSquaredSum / dataset.Rows >= qualityLimit)
66          return errorsSquaredSum / (sample+1); // return estimated MSE (when the remaining errors are on average the same)
67      }
68      errorsSquaredSum /= dataset.Rows;
69      if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
70        errorsSquaredSum = double.MaxValue;
71      }
72      return errorsSquaredSum;
73    }
74  }
75}
Note: See TracBrowser for help on using the repository browser.