[128] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Functions;
|
---|
| 30 | using HeuristicLab.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.StructureIdentification {
|
---|
| 33 | public class EarlyStoppingMeanSquaredErrorEvaluator : MeanSquaredErrorEvaluator {
|
---|
| 34 | public override string Description {
|
---|
| 35 | get {
|
---|
[142] | 36 | return @"Evaluates 'FunctionTree' for all samples of the dataset and calculates the mean-squared-error
|
---|
[128] | 37 | for the estimated values vs. the real values of 'TargetVariable'.
|
---|
| 38 | This operator stops the computation as soon as an upper limit for the mean-squared-error is reached.";
|
---|
| 39 | }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public EarlyStoppingMeanSquaredErrorEvaluator()
|
---|
| 43 | : base() {
|
---|
[129] | 44 | AddVariableInfo(new VariableInfo("QualityLimit", "The upper limit of the MSE which is used as early stopping criterion.", typeof(DoubleData), VariableKind.In));
|
---|
[128] | 45 | }
|
---|
| 46 |
|
---|
[142] | 47 | public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
|
---|
[136] | 48 | double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, false).Data;
|
---|
[128] | 49 | double errorsSquaredSum = 0;
|
---|
| 50 | double targetMean = dataset.GetMean(targetVariable);
|
---|
| 51 | for(int sample = 0; sample < dataset.Rows; sample++) {
|
---|
[142] | 52 | double estimated = functionTree.Evaluate(dataset, sample);
|
---|
[128] | 53 | double original = dataset.GetValue(sample, targetVariable);
|
---|
| 54 | if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
| 55 | estimated = targetMean + maximumPunishment;
|
---|
| 56 | } else if(estimated > targetMean + maximumPunishment) {
|
---|
| 57 | estimated = targetMean + maximumPunishment;
|
---|
| 58 | } else if(estimated < targetMean - maximumPunishment) {
|
---|
| 59 | estimated = targetMean - maximumPunishment;
|
---|
| 60 | }
|
---|
| 61 | double error = estimated - original;
|
---|
| 62 | errorsSquaredSum += error * error;
|
---|
| 63 |
|
---|
[136] | 64 | // check the limit and stop as soon as we hit the limit
|
---|
| 65 | if(errorsSquaredSum / dataset.Rows >= qualityLimit)
|
---|
| 66 | return errorsSquaredSum / (sample+1); // return estimated MSE (when the remaining errors are on average the same)
|
---|
[128] | 67 | }
|
---|
| 68 | errorsSquaredSum /= dataset.Rows;
|
---|
| 69 | if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
|
---|
| 70 | errorsSquaredSum = double.MaxValue;
|
---|
| 71 | }
|
---|
| 72 | return errorsSquaredSum;
|
---|
| 73 | }
|
---|
| 74 | }
|
---|
| 75 | }
|
---|