1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics;
|
---|
4 | using System.Linq;
|
---|
5 | using System.Text;
|
---|
6 | using System.IO;
|
---|
7 | using System.Drawing;
|
---|
8 |
|
---|
9 | namespace VRPProblemAnalyzer {
|
---|
10 |
|
---|
11 | public class Program {
|
---|
12 |
|
---|
13 | private static double[] GetDistances(double[,] vertices) {
|
---|
14 | List<double> result = new List<double>();
|
---|
15 |
|
---|
16 | int cities = vertices.Length / 2;
|
---|
17 | for (int i = 0; i < cities; i++) {
|
---|
18 | for (int j = 0; j < cities; j++) {
|
---|
19 | if (i != j) {
|
---|
20 | result.Add(Utils.GetDistance(vertices, i, j));
|
---|
21 | }
|
---|
22 | }
|
---|
23 | }
|
---|
24 |
|
---|
25 | return result.ToArray();
|
---|
26 | }
|
---|
27 |
|
---|
28 | private static double[] GetAverageDistances(double[,] vertices) {
|
---|
29 | int cities = vertices.Length / 2;
|
---|
30 | double[] result = new double[cities];
|
---|
31 |
|
---|
32 | for (int i = 0; i < cities; i++) {
|
---|
33 | double distance = 0;
|
---|
34 | for (int j = 0; j < cities; j++) {
|
---|
35 | if (i != j) {
|
---|
36 | distance += Utils.GetDistance(vertices, i, j);
|
---|
37 | }
|
---|
38 | }
|
---|
39 | result[i] = distance / (cities - 1);
|
---|
40 | }
|
---|
41 |
|
---|
42 | return result;
|
---|
43 | }
|
---|
44 |
|
---|
45 | private static double GetAverageDistance(TSPLIBParser instance) {
|
---|
46 | double result = 0;
|
---|
47 |
|
---|
48 | double[] distances = GetDistances(instance.Vertices);
|
---|
49 | result = distances.Average();
|
---|
50 |
|
---|
51 | return result;
|
---|
52 | }
|
---|
53 |
|
---|
54 | private static double GetDistanceHeterogenity(TSPLIBParser instance) {
|
---|
55 | double result = 0;
|
---|
56 |
|
---|
57 | result = GetAverageDistances(instance.Vertices).StandardDeviation();
|
---|
58 |
|
---|
59 | return result;
|
---|
60 | }
|
---|
61 |
|
---|
62 | private static double GetDistance(double[] cust1, double[] cust2) {
|
---|
63 | return Math.Sqrt(
|
---|
64 | Math.Pow((cust1[0] - cust2[0]), 2) +
|
---|
65 | Math.Pow((cust1[1] - cust2[1]), 2));
|
---|
66 | }
|
---|
67 |
|
---|
68 | private static double GetDistance(Cluster cluster1, Cluster cluster2) {
|
---|
69 | List<double> distances = new List<double>();
|
---|
70 | foreach (double[] cust1 in cluster1.Items) {
|
---|
71 | foreach (double[] cust2 in cluster2.Items) {
|
---|
72 | distances.Add(GetDistance(cust1, cust2));
|
---|
73 | }
|
---|
74 | }
|
---|
75 |
|
---|
76 | return distances.Min();
|
---|
77 |
|
---|
78 | //return GetDistance(cluster1.Center, cluster2.Center);
|
---|
79 | }
|
---|
80 |
|
---|
81 | private static double GetDistance(List<Cluster> clusters, Cluster cluster) {
|
---|
82 | List<double> distances = new List<double>();
|
---|
83 | foreach (Cluster other in clusters) {
|
---|
84 | if (other != cluster) {
|
---|
85 | distances.Add(GetDistance(cluster, other));
|
---|
86 | }
|
---|
87 | }
|
---|
88 |
|
---|
89 | if (distances.Count > 0)
|
---|
90 | return distances.Min();
|
---|
91 | else
|
---|
92 | return 0;
|
---|
93 | }
|
---|
94 |
|
---|
95 | private static double GetCohesion(Cluster cluster) {
|
---|
96 | double cohesion = 0;
|
---|
97 |
|
---|
98 | List<double> distances = new List<double>();
|
---|
99 | foreach (double[] cust1 in cluster.Items) {
|
---|
100 | //option 1
|
---|
101 | foreach (double[] cust2 in cluster.Items) {
|
---|
102 | if (cust1 != cust2) {
|
---|
103 | distances.Add(GetDistance(cust1, cust2));
|
---|
104 | }
|
---|
105 | }
|
---|
106 |
|
---|
107 | //option2
|
---|
108 | //distances.Add(GetDistance(cluster.Center, cust1));
|
---|
109 | }
|
---|
110 |
|
---|
111 | if (distances.Count > 0)
|
---|
112 | cohesion = distances.Average();
|
---|
113 |
|
---|
114 | return cohesion;
|
---|
115 | }
|
---|
116 |
|
---|
117 | private static double GetClustering(TSPLIBParser instance) {
|
---|
118 | double result = 0;
|
---|
119 |
|
---|
120 | int cities = instance.Vertices.Length / 2 - 1;
|
---|
121 | double[,] coordinates = new double[cities, 2];
|
---|
122 | for (int i = 1; i <= cities; i++) {
|
---|
123 | coordinates[i - 1, 0] = instance.Vertices[i, 0];
|
---|
124 | coordinates[i - 1, 1] = instance.Vertices[i, 1];
|
---|
125 | }
|
---|
126 |
|
---|
127 | double clusterFactor = 0;
|
---|
128 | double couplingFactor = 1;
|
---|
129 | double cohesionFactor = 1;
|
---|
130 |
|
---|
131 | double maxQuality = double.MinValue;
|
---|
132 |
|
---|
133 | int clusters = -1;
|
---|
134 | for (int i = 1; i <= cities; i++) {
|
---|
135 | List<Cluster> collection = KMeansClustering.Cluster(coordinates, i, 9);
|
---|
136 |
|
---|
137 | if (collection.Count > 0) {
|
---|
138 | List<double> distances = new List<double>();
|
---|
139 | List<double> cohesions = new List<double>();
|
---|
140 | foreach (Cluster cluster in collection) {
|
---|
141 | distances.Add(GetDistance(collection, cluster));
|
---|
142 | cohesions.Add(GetCohesion(cluster));
|
---|
143 | }
|
---|
144 |
|
---|
145 | double distance = distances.Average();
|
---|
146 | double cohesion = cohesions.Average();
|
---|
147 |
|
---|
148 | double quality = clusterFactor * (distances.Count / (double)cities) + couplingFactor * distance - cohesionFactor * cohesion;
|
---|
149 | if (quality > maxQuality) {
|
---|
150 | maxQuality = quality;
|
---|
151 | clusters = distances.Count;
|
---|
152 | }
|
---|
153 | }
|
---|
154 | }
|
---|
155 |
|
---|
156 | if (clusters != 0)
|
---|
157 | result = (cities / (double)clusters) / cities;
|
---|
158 |
|
---|
159 | return result;
|
---|
160 | }
|
---|
161 |
|
---|
162 | private static double GetDemandSize(TSPLIBParser instance) {
|
---|
163 | double result = 0;
|
---|
164 |
|
---|
165 | result = instance.Demands.Average();
|
---|
166 |
|
---|
167 | return result;
|
---|
168 | }
|
---|
169 |
|
---|
170 | private static double GetDemandHeterogenity(TSPLIBParser instance) {
|
---|
171 | double result = 0;
|
---|
172 |
|
---|
173 | result = instance.Demands.StandardDeviation();
|
---|
174 |
|
---|
175 | return result;
|
---|
176 | }
|
---|
177 |
|
---|
178 |
|
---|
179 | private static void Normalize(TSPLIBParser instance) {
|
---|
180 | //normalize demands
|
---|
181 | for (int i = 0; i < instance.Demands.Length; i++) {
|
---|
182 | instance.Demands[i] = instance.Demands[i] / instance.Capacity;
|
---|
183 | }
|
---|
184 | instance.Capacity = 1.0;
|
---|
185 |
|
---|
186 | //normalize coordinates
|
---|
187 | //-find bounds
|
---|
188 | var cities = Utils.MatrixToPointList(instance.Vertices);
|
---|
189 | var minX = cities.Min(c => c.X);
|
---|
190 | var minY = cities.Min(c => c.Y);
|
---|
191 | var maxX = cities.Max(c => c.X);
|
---|
192 | var maxY = cities.Max(c => c.Y);
|
---|
193 | var rangeX = maxX - minX;
|
---|
194 | var rangeY = maxY - minY;
|
---|
195 | var factor = Math.Sqrt(0.5)/Math.Max(rangeX, rangeY);
|
---|
196 |
|
---|
197 | for (int i = 0; i < instance.Vertices.GetLength(0); i++) {
|
---|
198 | instance.Vertices[i, 0] = (cities[i].X-minX)*factor;
|
---|
199 | instance.Vertices[i, 1] = (cities[i].Y-minY)*factor;
|
---|
200 | }
|
---|
201 | }
|
---|
202 |
|
---|
203 | static void Main(string[] args) {
|
---|
204 | if (args.Length < 1) {
|
---|
205 | Console.Error.WriteLine("Not enough arguments, please specify directory with VRP instances.");
|
---|
206 | Environment.Exit(-1);
|
---|
207 | }
|
---|
208 | var path = args[0];
|
---|
209 | using (StreamWriter sw = new StreamWriter(Path.Combine(path, "analysis.csv"))) {
|
---|
210 | sw.WriteLine("Instance;Customers;Clustering;DistanceAvg;DistanceStdev;DemandAvg;DemandStdev;GeographicExcentricity;DistanceExcentricity;DistanceDemandExcenetricity");
|
---|
211 |
|
---|
212 | string[] instances = Directory.GetFiles(path, "*.vrp", SearchOption.AllDirectories);
|
---|
213 | foreach (string instance in instances) {
|
---|
214 | TSPLIBParser parser = new TSPLIBParser(instance);
|
---|
215 | parser.Parse();
|
---|
216 | Normalize(parser);
|
---|
217 |
|
---|
218 | string instanceName = Path.GetFileNameWithoutExtension(instance);
|
---|
219 |
|
---|
220 | string solutionName = Path.Combine(Path.GetDirectoryName(instance), Path.GetFileNameWithoutExtension(instance) + ".opt");
|
---|
221 | SolutionParser solution = new SolutionParser(solutionName);
|
---|
222 | solution.Parse();
|
---|
223 |
|
---|
224 | sw.Write(instanceName);
|
---|
225 | sw.Write(';');
|
---|
226 | sw.Write(parser.Vertices.Length / 2 - 1);
|
---|
227 | sw.Write(';');
|
---|
228 | sw.Write(GetClustering(parser));
|
---|
229 | sw.Write(';');
|
---|
230 | sw.Write(GetAverageDistance(parser));
|
---|
231 | sw.Write(';');
|
---|
232 | sw.Write(GetDistanceHeterogenity(parser));
|
---|
233 | sw.Write(';');
|
---|
234 | sw.Write(GetDemandSize(parser));
|
---|
235 | sw.Write(';');
|
---|
236 | sw.Write(GetDemandHeterogenity(parser));
|
---|
237 | sw.Write(';');
|
---|
238 | sw.Write(DepotExcentricityCalculator.Geographic(parser.Vertices));
|
---|
239 | sw.Write(';');
|
---|
240 | sw.Write(DepotExcentricityCalculator.DistanceCentroid(parser.Vertices));
|
---|
241 | sw.Write(';');
|
---|
242 | sw.Write(DepotExcentricityCalculator.DemandDistanceCentroid(parser.Vertices, parser.Demands));
|
---|
243 | sw.Write(';');
|
---|
244 | sw.WriteLine();
|
---|
245 |
|
---|
246 |
|
---|
247 | Image picture = PictureGenerator.GeneratePicture(parser, solution);
|
---|
248 | picture.Save(Path.Combine(path, instanceName + ".png"));
|
---|
249 | }
|
---|
250 | }
|
---|
251 | //Console.WriteLine("Done. Press Enter...");
|
---|
252 | //Console.ReadLine();
|
---|
253 | }
|
---|
254 | }
|
---|
255 | }
|
---|