[7128] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.IO;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Optimization.Operators;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
| 35 |
|
---|
| 36 | [Item("PopulationDistributionAnalyzer", "An operator that analyzes the distribution of fitness values")]
|
---|
| 37 | [StorableClass]
|
---|
| 38 | public class PopulationDistributionAnalyzer : AlgorithmOperator, IAnalyzer {
|
---|
[7176] | 39 | public bool EnabledByDefault {
|
---|
| 40 | get { return false; }
|
---|
| 41 | }
|
---|
[7128] | 42 |
|
---|
| 43 | #region Parameters
|
---|
| 44 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
| 45 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 46 | }
|
---|
| 47 | public ValueLookupParameter<DataTable> FitnessQuantilesParameter {
|
---|
| 48 | get { return (ValueLookupParameter<DataTable>)Parameters["Fitness Quantiles"]; }
|
---|
| 49 | }
|
---|
| 50 | public ValueLookupParameter<DataTable> PopulationDispersionParameter {
|
---|
| 51 | get { return (ValueLookupParameter<DataTable>)Parameters["Population Dispersion"]; }
|
---|
| 52 | }
|
---|
| 53 | public ValueLookupParameter<DataTable> HigherPopulationMomentsParameter {
|
---|
| 54 | get { return (ValueLookupParameter<DataTable>)Parameters["Higher Population Moments"]; }
|
---|
| 55 | }
|
---|
| 56 | public ValueLookupParameter<DataTable> PopulationNormalityParameter {
|
---|
| 57 | get { return (ValueLookupParameter<DataTable>)Parameters["Population Normality"]; }
|
---|
| 58 | }
|
---|
| 59 | public ValueLookupParameter<VariableCollection> ResultsParameter {
|
---|
| 60 | get { return (ValueLookupParameter<VariableCollection>)Parameters["Results"]; }
|
---|
| 61 | }
|
---|
| 62 | public ValueLookupParameter<ResultCollection> PopulationDistributionResultsParameter {
|
---|
| 63 | get { return (ValueLookupParameter<ResultCollection>)Parameters["Population Distribution Results"]; }
|
---|
| 64 | }
|
---|
| 65 | public OptionalValueParameter<StringValue> PopulationLogFileNameParameter {
|
---|
| 66 | get { return (OptionalValueParameter<StringValue>)Parameters["Population Log File Name"]; }
|
---|
| 67 | }
|
---|
[8172] | 68 | public IConstrainedValueParameter<IntValue> NQuantilesParameter {
|
---|
| 69 | get { return (IConstrainedValueParameter<IntValue>)Parameters["NQuantiles"]; }
|
---|
[7128] | 70 | }
|
---|
| 71 | #endregion
|
---|
| 72 |
|
---|
| 73 | [StorableConstructor]
|
---|
| 74 | protected PopulationDistributionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 75 | protected PopulationDistributionAnalyzer(PopulationDistributionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 76 |
|
---|
| 77 | public PopulationDistributionAnalyzer() {
|
---|
| 78 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The quality of the solution"));
|
---|
| 79 | Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The collection of all results of this algorithm"));
|
---|
| 80 | Parameters.Add(new ValueLookupParameter<ResultCollection>("Population Distribution Results", "All results from population distribution analysis"));
|
---|
| 81 | Parameters.Add(new ValueLookupParameter<DataTable>("Fitness Quantiles", "Data table with quantiles of the fitness distribution"));
|
---|
| 82 | Parameters.Add(new ValueLookupParameter<DataTable>("Population Dispersion", "Data table dispersion statistics"));
|
---|
| 83 | Parameters.Add(new ValueLookupParameter<DataTable>("Higher Population Moments", "Data table skewness and kurtosis of population's fitness distribution"));
|
---|
| 84 | Parameters.Add(new ValueLookupParameter<DataTable>("Population Normality", "Jarque-Bera Normality Test p-value and 0.05 threshold"));
|
---|
| 85 | Parameters.Add(new OptionalValueParameter<StringValue>("Population Log File Name", "File name of a log file where all population fittness values are logged to"));
|
---|
| 86 | Parameters.Add(new ConstrainedValueParameter<IntValue>("NQuantiles", "Number of quantiles to plot", new ItemSet<IntValue>(Enumerable.Range(1, 50).Select(v => new IntValue(v)))));
|
---|
| 87 |
|
---|
| 88 | NQuantilesParameter.Value = NQuantilesParameter.ValidValues.Single(v => v.Value == 10);
|
---|
| 89 |
|
---|
| 90 | var resultsCollector = new ResultsCollector();
|
---|
| 91 | resultsCollector.ResultsParameter.ActualName = PopulationDistributionResultsParameter.Name;
|
---|
| 92 | resultsCollector.CollectedValues.Add(new LookupParameter<DataTable>(FitnessQuantilesParameter.Name));
|
---|
| 93 | resultsCollector.CollectedValues.Add(new LookupParameter<DataTable>(PopulationDispersionParameter.Name));
|
---|
| 94 | resultsCollector.CollectedValues.Add(new LookupParameter<DataTable>(HigherPopulationMomentsParameter.Name));
|
---|
| 95 | resultsCollector.CollectedValues.Add(new LookupParameter<DataTable>(PopulationNormalityParameter.Name));
|
---|
| 96 |
|
---|
| 97 | var globalResultsCollector = new ResultsCollector();
|
---|
| 98 | globalResultsCollector.CollectedValues.Add(new ValueLookupParameter<ResultCollection>(PopulationDistributionResultsParameter.Name));
|
---|
| 99 |
|
---|
| 100 | OperatorGraph.InitialOperator = resultsCollector;
|
---|
| 101 | resultsCollector.Successor = globalResultsCollector;
|
---|
| 102 | globalResultsCollector.Successor = null;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 106 | return new PopulationDistributionAnalyzer(this, cloner);
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | public override IOperation Apply() {
|
---|
| 110 | if (PopulationDistributionResultsParameter.ActualValue == null)
|
---|
| 111 | PopulationDistributionResultsParameter.ActualValue = new ResultCollection();
|
---|
| 112 | var qualities = QualityParameter.ActualValue.Select(v => v.Value).ToArray();
|
---|
| 113 | CalculateQuantiles(qualities);
|
---|
| 114 | CalculateDistributionParameters(qualities);
|
---|
| 115 | LogPopulationFitnessValues(qualities);
|
---|
| 116 | return base.Apply();
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | private void CalculateQuantiles(double[] qualities) {
|
---|
| 120 | DataTable quantiles = FitnessQuantilesParameter.ActualValue;
|
---|
| 121 | if (quantiles == null) {
|
---|
| 122 | quantiles = new DataTable("Fitness Quantiles");
|
---|
| 123 | quantiles.Description = "The population's fitness quantiles";
|
---|
| 124 | FitnessQuantilesParameter.ActualValue = quantiles;
|
---|
| 125 | for (int i = 0; i <= NQuantilesParameter.Value.Value; i++)
|
---|
| 126 | quantiles.Rows.Add(new DataRow((i * 10).ToString()));
|
---|
| 127 | }
|
---|
| 128 | int n_quantiles = quantiles.Rows.Count;
|
---|
| 129 | for (int i = 0; i < n_quantiles; i++) {
|
---|
| 130 | double v = 0;
|
---|
| 131 | alglib.basestat.samplepercentile(qualities, qualities.Length, 1.0 * i / n_quantiles, ref v);
|
---|
| 132 | quantiles.Rows[(i * 10).ToString()].Values.Add(v);
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | private void CalculateDistributionParameters(double[] qualities) {
|
---|
| 137 | DataTable populationDispersion = PopulationDispersionParameter.ActualValue;
|
---|
| 138 | if (populationDispersion == null) {
|
---|
| 139 | populationDispersion = new DataTable("Population Dispersion");
|
---|
| 140 | PopulationDispersionParameter.ActualValue = populationDispersion;
|
---|
| 141 | populationDispersion.Rows.Add(new DataRow("Std. Deviation"));
|
---|
| 142 | populationDispersion.Rows.Add(new DataRow("Mean Difference"));
|
---|
| 143 | }
|
---|
| 144 | DataTable higherPopulationMoments = HigherPopulationMomentsParameter.ActualValue;
|
---|
| 145 | if (higherPopulationMoments == null) {
|
---|
| 146 | higherPopulationMoments = new DataTable("Higher Population Moments");
|
---|
| 147 | HigherPopulationMomentsParameter.ActualValue = higherPopulationMoments;
|
---|
| 148 | higherPopulationMoments.Rows.Add(new DataRow("Skewness"));
|
---|
| 149 | higherPopulationMoments.Rows.Add(new DataRow("Kurtosis"));
|
---|
| 150 | }
|
---|
| 151 | DataTable populationNormality = PopulationNormalityParameter.ActualValue;
|
---|
| 152 | if (populationNormality == null) {
|
---|
| 153 | populationNormality = new DataTable("Population Normality");
|
---|
| 154 | PopulationNormalityParameter.ActualValue = populationNormality;
|
---|
| 155 | populationNormality.Rows.Add(new DataRow("Jarque-Bera P-Value"));
|
---|
| 156 | populationNormality.Rows.Add(new DataRow("0.05"));
|
---|
| 157 | }
|
---|
| 158 |
|
---|
| 159 | double mean, variance, skewness, kurtosis, p_value;
|
---|
| 160 | mean = variance = skewness = kurtosis = p_value = 0;
|
---|
| 161 | alglib.basestat.samplemoments(qualities, qualities.Length, ref mean, ref variance, ref skewness, ref kurtosis);
|
---|
| 162 | alglib.jarquebera.jarqueberatest(qualities, qualities.Length, ref p_value);
|
---|
| 163 | double mean_difference =
|
---|
| 164 | (from i in Enumerable.Range(0, qualities.Length)
|
---|
| 165 | from j in Enumerable.Range(0, i)
|
---|
| 166 | select Math.Abs(qualities[i] - qualities[j])).Sum()
|
---|
| 167 | * 2 / qualities.Length / (qualities.Length - 1);
|
---|
| 168 |
|
---|
| 169 | populationDispersion.Rows["Std. Deviation"].Values.Add(Math.Sqrt(variance));
|
---|
| 170 | populationDispersion.Rows["Mean Difference"].Values.Add(mean_difference);
|
---|
| 171 | higherPopulationMoments.Rows["Skewness"].Values.Add(skewness);
|
---|
| 172 | higherPopulationMoments.Rows["Kurtosis"].Values.Add(kurtosis);
|
---|
| 173 | populationNormality.Rows["Jarque-Bera P-Value"].Values.Add(p_value);
|
---|
| 174 | populationNormality.Rows["0.05"].Values.Add(0.05);
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | private void LogPopulationFitnessValues(double[] qualities) {
|
---|
| 178 | if (PopulationLogFileNameParameter.ActualValue == null)
|
---|
| 179 | return;
|
---|
| 180 | using (var writer = new StreamWriter(PopulationLogFileNameParameter.Value.Value, true)) {
|
---|
| 181 | foreach (var q in qualities) {
|
---|
| 182 | writer.Write(q);
|
---|
| 183 | writer.Write(";");
|
---|
| 184 | }
|
---|
| 185 | writer.WriteLine();
|
---|
| 186 | writer.Close();
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 | }
|
---|
| 190 | } |
---|