[7128] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Drawing;
|
---|
| 25 | using System.Linq;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
| 33 |
|
---|
| 34 | [Item("PermutationFitnessDistanceCorrelationAnalyzer", "An operator that analyzes the correlation between fitness and distance to the best know solution for permutation encoding")]
|
---|
| 35 | [StorableClass]
|
---|
| 36 | public class PermutationFitnessDistanceCorrelationAnalyzer : FitnessDistanceCorrelationAnalyzer, IPermutationOperator {
|
---|
| 37 |
|
---|
| 38 | #region Parameters
|
---|
| 39 | public ScopeTreeLookupParameter<Permutation> PermutationParameter {
|
---|
| 40 | get { return (ScopeTreeLookupParameter<Permutation>)Parameters["Permutation"]; }
|
---|
| 41 | }
|
---|
| 42 | public LookupParameter<Permutation> BestKnownSolution {
|
---|
| 43 | get { return (LookupParameter<Permutation>)Parameters["BestKnownSolution"]; }
|
---|
| 44 | }
|
---|
| 45 | #endregion
|
---|
| 46 |
|
---|
| 47 | [StorableConstructor]
|
---|
| 48 | protected PermutationFitnessDistanceCorrelationAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 49 | protected PermutationFitnessDistanceCorrelationAnalyzer(PermutationFitnessDistanceCorrelationAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 50 |
|
---|
| 51 | public PermutationFitnessDistanceCorrelationAnalyzer() {
|
---|
| 52 | Parameters.Add(new ScopeTreeLookupParameter<Permutation>("Permutation", "The permutation encoded solution"));
|
---|
| 53 | Parameters.Add(new LookupParameter<Permutation>("BestKnownSolution", "The best known solution"));
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 57 | return new PermutationFitnessDistanceCorrelationAnalyzer(this, cloner);
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | private static Point GetEdge(Permutation a, int index) {
|
---|
| 61 | switch (a.PermutationType) {
|
---|
| 62 | case PermutationTypes.RelativeDirected:
|
---|
| 63 | return new Point(a[index], a[(index + 1) % a.Length]);
|
---|
| 64 | case PermutationTypes.RelativeUndirected:
|
---|
| 65 | return new Point(
|
---|
| 66 | Math.Min(a[index], a[(index + 1) % a.Length]),
|
---|
| 67 | Math.Max(a[index], a[(index + 1) % a.Length]));
|
---|
| 68 | default:
|
---|
| 69 | throw new ArgumentException("cannot derive edge from non-relative permutation type");
|
---|
| 70 | }
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | public static double Distance(Permutation a, Permutation b) {
|
---|
| 74 | if (a.PermutationType != b.PermutationType)
|
---|
| 75 | throw new ArgumentException(
|
---|
| 76 | "Cannot calculate distance between different permuatation types: " +
|
---|
| 77 | a.PermutationType + " and " + b.PermutationType);
|
---|
| 78 | if (a.PermutationType == PermutationTypes.Absolute) {
|
---|
| 79 | int nEqual = 0;
|
---|
| 80 | for (int i = 0; i < Math.Min(a.Length, b.Length); i++) {
|
---|
| 81 | if (a[i] == b[i])
|
---|
| 82 | nEqual++;
|
---|
| 83 | }
|
---|
| 84 | return Math.Max(a.Length, b.Length) - nEqual;
|
---|
| 85 | } else {
|
---|
| 86 | HashSet<Point> edges = new HashSet<Point>();
|
---|
| 87 | for (int i = 0; i < a.Length; i++)
|
---|
| 88 | edges.Add(GetEdge(a, i));
|
---|
| 89 | int nCommonEdges = 0;
|
---|
| 90 | for (int i = 0; i < b.Length; i++) {
|
---|
| 91 | if (edges.Contains(GetEdge(b, i)))
|
---|
| 92 | nCommonEdges++;
|
---|
| 93 | }
|
---|
| 94 | return Math.Max(a.Length, b.Length) - nCommonEdges;
|
---|
| 95 | }
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | protected override IEnumerable<double> GetDistancesToBestKnownSolution() {
|
---|
| 99 | if (PermutationParameter.ActualName == null)
|
---|
| 100 | return new double[0];
|
---|
| 101 | Permutation bestKnownValue = BestKnownSolution.ActualValue;
|
---|
| 102 | if (bestKnownValue == null)
|
---|
| 103 | return PermutationParameter.ActualValue.Select(v => 0d);
|
---|
| 104 | return PermutationParameter.ActualValue.Select(v => Distance(v, bestKnownValue));
|
---|
| 105 | }
|
---|
| 106 | }
|
---|
| 107 | } |
---|