Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ExportSymbolicDataAnalysisSolutions/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/Variable.cs @ 12012

Last change on this file since 12012 was 9456, checked in by swagner, 12 years ago

Updated copyright year and added some missing license headers (#1889)

File size: 5.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
29  [StorableClass]
30  [Item("Variable", "Represents a variable value.")]
31  public class Variable : Symbol {
32    #region Properties
33    [Storable]
34    private double weightMu;
35    public double WeightMu {
36      get { return weightMu; }
37      set {
38        if (value != weightMu) {
39          weightMu = value;
40          OnChanged(EventArgs.Empty);
41        }
42      }
43    }
44    [Storable]
45    private double weightSigma;
46    public double WeightSigma {
47      get { return weightSigma; }
48      set {
49        if (weightSigma < 0.0) throw new ArgumentException("Negative sigma is not allowed.");
50        if (value != weightSigma) {
51          weightSigma = value;
52          OnChanged(EventArgs.Empty);
53        }
54      }
55    }
56    [Storable]
57    private double weightManipulatorMu;
58    public double WeightManipulatorMu {
59      get { return weightManipulatorMu; }
60      set {
61        if (value != weightManipulatorMu) {
62          weightManipulatorMu = value;
63          OnChanged(EventArgs.Empty);
64        }
65      }
66    }
67    [Storable]
68    private double weightManipulatorSigma;
69    public double WeightManipulatorSigma {
70      get { return weightManipulatorSigma; }
71      set {
72        if (weightManipulatorSigma < 0.0) throw new ArgumentException("Negative sigma is not allowed.");
73        if (value != weightManipulatorSigma) {
74          weightManipulatorSigma = value;
75          OnChanged(EventArgs.Empty);
76        }
77      }
78    }
79    [Storable(DefaultValue = 0.0)]
80    private double multiplicativeWeightManipulatorSigma;
81    public double MultiplicativeWeightManipulatorSigma {
82      get { return multiplicativeWeightManipulatorSigma; }
83      set {
84        if (multiplicativeWeightManipulatorSigma < 0.0) throw new ArgumentException("Negative sigma is not allowed.");
85        if (value != multiplicativeWeightManipulatorSigma) {
86          multiplicativeWeightManipulatorSigma = value;
87          OnChanged(EventArgs.Empty);
88        }
89      }
90    }
91    private List<string> variableNames;
92    [Storable]
93    public IEnumerable<string> VariableNames {
94      get { return variableNames; }
95      set {
96        if (value == null) throw new ArgumentNullException();
97        variableNames.Clear();
98        variableNames.AddRange(value);
99        OnChanged(EventArgs.Empty);
100      }
101    }
102
103    private List<string> allVariableNames;
104    [Storable]
105    public IEnumerable<string> AllVariableNames {
106      get { return allVariableNames; }
107      set {
108        if (value == null) throw new ArgumentNullException();
109        allVariableNames.Clear();
110        allVariableNames.AddRange(value);
111      }
112    }
113
114    public override bool Enabled {
115      get {
116        if (variableNames.Count == 0) return false;
117        return base.Enabled;
118      }
119      set {
120        if (variableNames.Count == 0) base.Enabled = false;
121        else base.Enabled = value;
122      }
123    }
124
125    private const int minimumArity = 0;
126    private const int maximumArity = 0;
127
128    public override int MinimumArity {
129      get { return minimumArity; }
130    }
131    public override int MaximumArity {
132      get { return maximumArity; }
133    }
134    #endregion
135
136    [StorableHook(HookType.AfterDeserialization)]
137    private void AfterDeserialization() {
138      if (allVariableNames == null || (allVariableNames.Count == 0 && variableNames.Count > 0)) {
139        allVariableNames = variableNames;
140      }
141    }
142
143    [StorableConstructor]
144    protected Variable(bool deserializing)
145      : base(deserializing) {
146      variableNames = new List<string>();
147      allVariableNames = new List<string>();
148    }
149    protected Variable(Variable original, Cloner cloner)
150      : base(original, cloner) {
151      weightMu = original.weightMu;
152      weightSigma = original.weightSigma;
153      variableNames = new List<string>(original.variableNames);
154      allVariableNames = new List<string>(original.allVariableNames);
155      weightManipulatorMu = original.weightManipulatorMu;
156      weightManipulatorSigma = original.weightManipulatorSigma;
157      multiplicativeWeightManipulatorSigma = original.multiplicativeWeightManipulatorSigma;
158    }
159    public Variable() : this("Variable", "Represents a variable value.") { }
160    public Variable(string name, string description)
161      : base(name, description) {
162      weightMu = 1.0;
163      weightSigma = 1.0;
164      weightManipulatorMu = 0.0;
165      weightManipulatorSigma = 0.05;
166      multiplicativeWeightManipulatorSigma = 0.03;
167      variableNames = new List<string>();
168      allVariableNames = new List<string>();
169    }
170
171    public override ISymbolicExpressionTreeNode CreateTreeNode() {
172      return new VariableTreeNode(this);
173    }
174
175    public override IDeepCloneable Clone(Cloner cloner) {
176      return new Variable(this, cloner);
177    }
178  }
179}
Note: See TracBrowser for help on using the repository browser.