1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | // ReSharper disable once CheckNamespace
|
---|
34 | namespace HeuristicLab.Algorithms.EGO {
|
---|
35 |
|
---|
36 | [StorableClass]
|
---|
37 | [Item("LatinHyperCubeDesign", "A latin hypercube sampling strategy for real valued optimization")]
|
---|
38 | public class LatinHyperCubeDesign : ParameterizedNamedItem, IInitialSampling {
|
---|
39 |
|
---|
40 | public const string DesigningAlgorithmParamterName = "DesignningAlgorithm";
|
---|
41 | public IValueParameter<IAlgorithm> DesigningAlgorithmParameter => Parameters[DesigningAlgorithmParamterName] as IValueParameter<IAlgorithm>;
|
---|
42 | private IAlgorithm DesigningAlgorithm => DesigningAlgorithmParameter.Value;
|
---|
43 |
|
---|
44 | [StorableConstructor]
|
---|
45 | private LatinHyperCubeDesign(bool deserializing) : base(deserializing) { }
|
---|
46 | private LatinHyperCubeDesign(LatinHyperCubeDesign original, Cloner cloner) : base(original, cloner) { }
|
---|
47 | public LatinHyperCubeDesign() {
|
---|
48 | var es = new EvolutionStrategy.EvolutionStrategy {
|
---|
49 | PopulationSize = { Value = 50 },
|
---|
50 | Children = { Value = 100 },
|
---|
51 | MaximumGenerations = { Value = 300 }
|
---|
52 | };
|
---|
53 | Parameters.Add(new ValueParameter<IAlgorithm>(DesigningAlgorithmParamterName, "The Algorithm used for optimizing the Latin Hypercube (minimax) criterion.", es));
|
---|
54 | }
|
---|
55 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
56 | return new LatinHyperCubeDesign(this, cloner);
|
---|
57 | }
|
---|
58 |
|
---|
59 | public RealVector[] GetSamples(int noSamples, RealVector[] existingSamples, RealVectorEncoding encoding, IRandom random) {
|
---|
60 | var lhsprob = new LHSProblem(noSamples, existingSamples, encoding);
|
---|
61 | DesigningAlgorithm.Problem = lhsprob;
|
---|
62 | EgoUtilities.SyncRunSubAlgorithm(DesigningAlgorithm, random.Next());
|
---|
63 | return lhsprob.BestSolution;
|
---|
64 | }
|
---|
65 | }
|
---|
66 |
|
---|
67 | [StorableClass]
|
---|
68 | internal class LHSProblem : SingleObjectiveBasicProblem<RealVectorEncoding> {
|
---|
69 | [Storable]
|
---|
70 | private int NoVectors;
|
---|
71 | [Storable]
|
---|
72 | private int NoDimensions;
|
---|
73 | [Storable]
|
---|
74 | private RealVector[] ExistingSamples;
|
---|
75 |
|
---|
76 | [Storable]
|
---|
77 | public double BestQuality = double.MinValue;
|
---|
78 | [Storable]
|
---|
79 | public RealVector[] BestSolution;
|
---|
80 |
|
---|
81 | [StorableConstructor]
|
---|
82 | private LHSProblem(bool deserializing) : base(deserializing) { }
|
---|
83 |
|
---|
84 | private LHSProblem(LHSProblem original, Cloner cloner) : base(original, cloner) {
|
---|
85 | NoDimensions = original.NoDimensions;
|
---|
86 | NoVectors = original.NoVectors;
|
---|
87 | ExistingSamples = original.ExistingSamples?.Select(cloner.Clone).ToArray();
|
---|
88 | }
|
---|
89 |
|
---|
90 | public LHSProblem(int novectors, RealVector[] existingSamples, RealVectorEncoding encoding) {
|
---|
91 | NoVectors = novectors;
|
---|
92 | NoDimensions = encoding.Length;
|
---|
93 | ExistingSamples = existingSamples;
|
---|
94 | Encoding.Length = novectors * encoding.Length;
|
---|
95 | var b = new DoubleMatrix(Encoding.Length, 2);
|
---|
96 | for (int i = 0; i < novectors; i++) {
|
---|
97 | for (int j = 0; j < encoding.Length; j++) {
|
---|
98 | var k = j % encoding.Bounds.Rows;
|
---|
99 | b[i * encoding.Length + j, 0] = encoding.Bounds[k, 0];
|
---|
100 | b[i * encoding.Length + j, 1] = encoding.Bounds[k, 1];
|
---|
101 | }
|
---|
102 | }
|
---|
103 | Encoding.Bounds = b;
|
---|
104 |
|
---|
105 | }
|
---|
106 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
107 | return new LHSProblem(this, cloner);
|
---|
108 | }
|
---|
109 |
|
---|
110 | public override double Evaluate(Individual individual, IRandom random) {
|
---|
111 | return Enumerable.Range(0, NoVectors).Select(x => MinDistance(x, individual.RealVector())).Min();
|
---|
112 | }
|
---|
113 |
|
---|
114 | //returns -1 if no distance can be calculated
|
---|
115 | private double MinDistance(int pointNumber, RealVector design) {
|
---|
116 | var min = double.MaxValue;
|
---|
117 | if (ExistingSamples != null && ExistingSamples.Length != 0) min = ExistingSamples.Select(x => Distance(x, ExtractPoint(pointNumber, design))).Min();
|
---|
118 | if (pointNumber == 0) return min;
|
---|
119 | var min2 = Enumerable.Range(0, pointNumber).Select(i => Distance(ExtractPoint(i, design), ExtractPoint(pointNumber, design))).Min();
|
---|
120 | return min < 0 ? min2 : Math.Min(min, min2);
|
---|
121 | }
|
---|
122 | private IEnumerable<double> ExtractPoint(int pointNumber, RealVector design) {
|
---|
123 | return design.Skip(NoDimensions * pointNumber).Take(NoDimensions);
|
---|
124 | }
|
---|
125 | private static double Distance(IEnumerable<double> a, IEnumerable<double> b) {
|
---|
126 | return a.Zip(b, (d, d1) => d - d1).Sum(d => d * d);
|
---|
127 | }
|
---|
128 |
|
---|
129 | public override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) {
|
---|
130 | base.Analyze(individuals, qualities, results, random);
|
---|
131 | var i = qualities.ArgMin(x => x);
|
---|
132 | if (BestQuality > qualities[i]) return;
|
---|
133 | var r = individuals[i].RealVector();
|
---|
134 | BestSolution = Enumerable.Range(0, NoVectors).Select(x => new RealVector(ExtractPoint(x, r).ToArray())).ToArray();
|
---|
135 | }
|
---|
136 |
|
---|
137 | public override bool Maximization => true;
|
---|
138 | }
|
---|
139 |
|
---|
140 |
|
---|
141 |
|
---|
142 |
|
---|
143 | }
|
---|
144 |
|
---|