1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
25 | using HeuristicLab.Analysis;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
34 | using HeuristicLab.Problems.SurrogateProblem;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Algorithms.EGO {
|
---|
37 | [Item("FitnessClusteringAnalyzer", "Analyzes the correlation between perdictions and actual fitness values")]
|
---|
38 | [StorableClass]
|
---|
39 | public class FitnessClusteringAnalyzer : SingleSuccessorOperator, IAnalyzer, IStochasticOperator {
|
---|
40 | public override bool CanChangeName => true;
|
---|
41 | public bool EnabledByDefault => false;
|
---|
42 |
|
---|
43 | public ILookupParameter<ModifiableDataset> DatasetParameter => (ILookupParameter<ModifiableDataset>)Parameters["Dataset"];
|
---|
44 | public ILookupParameter<ResultCollection> ResultsParameter => (ILookupParameter<ResultCollection>)Parameters["Results"];
|
---|
45 | public IFixedValueParameter<IntValue> KParameter => (IFixedValueParameter<IntValue>)Parameters["K"];
|
---|
46 | public IFixedValueParameter<IntValue> K2Parameter => (IFixedValueParameter<IntValue>)Parameters["K2"];
|
---|
47 | public ILookupParameter<IRandom> RandomParameter => (ILookupParameter<IRandom>)Parameters["Random"];
|
---|
48 |
|
---|
49 | private const string SolutionName = "FitnessClustering";
|
---|
50 | private const string PlotName = "FitnessClusterPlot";
|
---|
51 |
|
---|
52 | [StorableConstructor]
|
---|
53 | protected FitnessClusteringAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
54 |
|
---|
55 | protected FitnessClusteringAnalyzer(FitnessClusteringAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
56 |
|
---|
57 | public FitnessClusteringAnalyzer() {
|
---|
58 | Parameters.Add(new LookupParameter<ModifiableDataset>("Dataset"));
|
---|
59 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The collection to store the results in."));
|
---|
60 | Parameters.Add(new FixedValueParameter<IntValue>("K", "The number of clusters.", new IntValue(3)));
|
---|
61 | Parameters.Add(new FixedValueParameter<IntValue>("K2", "The number of clusters.", new IntValue(3)));
|
---|
62 | Parameters.Add(new LookupParameter<IRandom>("Random"));
|
---|
63 | }
|
---|
64 |
|
---|
65 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
66 | return new FitnessClusteringAnalyzer(this, cloner);
|
---|
67 | }
|
---|
68 |
|
---|
69 | public sealed override IOperation Apply() {
|
---|
70 | var dataset = DatasetParameter.ActualValue;
|
---|
71 | var results = ResultsParameter.ActualValue;
|
---|
72 | var random = RandomParameter.ActualValue;
|
---|
73 | if (dataset.Rows < KParameter.Value.Value || dataset.Rows < 20) return base.Apply();
|
---|
74 |
|
---|
75 | var clustering = CreateClustering(dataset, random);
|
---|
76 | if (!results.ContainsKey(SolutionName)) results.Add(new Result(SolutionName, clustering));
|
---|
77 | results[SolutionName].Value = clustering;
|
---|
78 | var plot = CreateTSNEPlot(clustering, dataset, random);
|
---|
79 | if (!results.ContainsKey(PlotName)) results.Add(new Result(PlotName, plot));
|
---|
80 | results[PlotName].Value = plot;
|
---|
81 |
|
---|
82 | return base.Apply();
|
---|
83 | }
|
---|
84 |
|
---|
85 |
|
---|
86 | private ScatterPlot CreateTSNEPlot(KMeansClusteringSolution clustering, ModifiableDataset data, IRandom random) {
|
---|
87 | var clusteredData = (ModifiableDataset)data.Clone();
|
---|
88 | clusteredData.AddVariable("cluster", clustering.ClusterValues.Select(x => (double)x));
|
---|
89 |
|
---|
90 | var prob = new RegressionProblem {
|
---|
91 | ProblemData = new RegressionProblemData(clusteredData, new[] { "output" }, "cluster")
|
---|
92 | };
|
---|
93 | var tsne = new TSNEAlgorithm {
|
---|
94 | Perplexity = data.Rows / 3 - 1,
|
---|
95 | Problem = prob
|
---|
96 | };
|
---|
97 | tsne.ClassesParameter.Value.Value = "cluster";
|
---|
98 | var res = EgoUtilities.SyncRunSubAlgorithm(tsne, random.Next());
|
---|
99 | return res.Select(r => r.Value).OfType<ScatterPlot>().First();
|
---|
100 | }
|
---|
101 |
|
---|
102 | private KMeansClusteringSolution CreateClustering(ModifiableDataset dataset, IRandom random) {
|
---|
103 | var pd = new ClusteringProblemData(dataset, new[] { "output" });
|
---|
104 | pd.TestPartition.Start = dataset.Rows;
|
---|
105 | pd.TestPartition.End = dataset.Rows;
|
---|
106 | pd.TrainingPartition.Start = 0;
|
---|
107 | pd.TrainingPartition.End = dataset.Rows;
|
---|
108 |
|
---|
109 | return ObservationWeightedKMeans.CreateKMeansSolution(pd, GetWeights(dataset), KParameter.Value.Value, 1000, random);
|
---|
110 | }
|
---|
111 | private double[] GetWeights(ModifiableDataset dataset) {
|
---|
112 | var inputMatrix = dataset.ToArray(dataset.VariableNames.Where(x => x.StartsWith("input")), Enumerable.Range(0, dataset.Rows));
|
---|
113 | if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
|
---|
114 | throw new NotSupportedException("k-Means clustering does not support NaN or infinity values in the input dataset.");
|
---|
115 | var indices = Enumerable.Range(0, inputMatrix.GetLength(0)).ToArray();
|
---|
116 | return indices.Select(i =>
|
---|
117 | K2Parameter.Value.Value > 0 ? indices.Where(j => j != i).Select(j =>
|
---|
118 | 1 / Math.Sqrt(EuclideanSquared(inputMatrix, inputMatrix, i, j))
|
---|
119 | ).OrderBy(x => x).Take(K2Parameter.Value.Value).Sum() : 1.0
|
---|
120 | ).ToArray();
|
---|
121 | }
|
---|
122 | private static double EuclideanSquared(double[,] input, double[,] input2, int row1, int row2) {
|
---|
123 | var sum = 0.0;
|
---|
124 | for (var i = 0; i < input.GetLength(1); i++) {
|
---|
125 | var d = input[row1, i] - input2[row2, i];
|
---|
126 | sum += d * d;
|
---|
127 | }
|
---|
128 | return sum;
|
---|
129 | }
|
---|
130 |
|
---|
131 | }
|
---|
132 | }
|
---|