Free cookie consent management tool by TermsFeed Policy Generator

source: branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/InfillCriteria/RobustImprovement.cs @ 15016

Last change on this file since 15016 was 14818, checked in by bwerth, 8 years ago

#2745 added several new InfillCriteria and moved Parameters from the InfillProblem to the Criteria themselves; added Sanitiy checks for GaussianProcessRegression

File size: 6.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.RealVectorEncoding;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis;
32
33// ReSharper disable once CheckNamespace
34namespace HeuristicLab.Algorithms.EGO {
35
36  [StorableClass]
37  [Item("RobustImprovementMeassure", "Adding or Subtracting the variance * factor to the model estimation")]
38  public class RobustImprovement : InfillCriterionBase {
39
40    #region ParameterNames
41    private const string KParameterName = "NearestNeighbours";
42    #endregion
43
44    #region ParameterProperties
45    public IFixedValueParameter<IntValue> KParameter => Parameters[KParameterName] as IFixedValueParameter<IntValue>;
46
47    #endregion
48
49    #region Properties
50    private int K => KParameter.Value.Value;
51
52    [Storable]
53    private double MaxSolutionDist;
54
55    [Storable]
56    //TODO use VP-Tree instead of array
57    private RealVector[] Data;
58    #endregion
59
60    #region HL-Constructors, Serialization and Cloning
61    [StorableConstructor]
62    private RobustImprovement(bool deserializing) : base(deserializing) { }
63
64    private RobustImprovement(RobustImprovement original, Cloner cloner) : base(original, cloner) {
65      MaxSolutionDist = original.MaxSolutionDist;
66      Data = original.Data != null ? original.Data.Select(cloner.Clone).ToArray() : null;
67    }
68    public RobustImprovement() {
69      Parameters.Add(new FixedValueParameter<IntValue>(KParameterName, "A value larger than 0 indicating how many nearestNeighbours shall be used to determine the RI meassure", new IntValue(3)));
70    }
71    public override IDeepCloneable Clone(Cloner cloner) {
72      return new RobustImprovement(this, cloner);
73    }
74    #endregion
75
76
77    public override double Evaluate(RealVector vector) {
78      List<RealVector> nearestNeighbours;
79      List<double> distances;
80      Search(vector, K, out nearestNeighbours, out distances);
81      var distVectors = nearestNeighbours.Select(x => Minus(x, vector)).ToList();
82      var sum = 0.0;
83      var wsum = 1.0; //weights for angular distance
84      var used = new HashSet<RealVector>();
85      foreach (var distVector in distVectors) {
86        var d = Math.Pow(distances[used.Count], 0.5);
87        if (used.Count == 0) {
88          sum += d;
89        } else {
90          var w = used.Select(x => Angular(distVector, x)).Min();
91          sum += w * d;
92          wsum += w;
93        }
94        used.Add(distVector);
95      }
96      sum /= wsum * MaxSolutionDist; //normalize
97      return sum;
98    }
99    public override bool Maximization() {
100      return ExpensiveMaximization;
101    }
102    protected override void Initialize() {
103      var model = RegressionSolution.Model as IConfidenceRegressionModel;
104      if (model == null) throw new ArgumentException("can not calculate EI without confidence measure");
105      Data = new RealVector[RegressionSolution.ProblemData.Dataset.Rows];
106      for (var i = 0; i < Data.Length; i++) {
107        Data[i] = new RealVector(Encoding.Length);
108        for (var j = 0; j < Encoding.Length; j++)
109          Data[i][j] = RegressionSolution.ProblemData.Dataset.GetDoubleValue(i, j);
110      }
111
112      var maxSolution = new double[Encoding.Length];
113      var minSolution = new double[Encoding.Length];
114      for (var i = 0; i < Encoding.Length; i++) {
115        var j = i % Encoding.Bounds.Rows;
116        maxSolution[i] = Encoding.Bounds[j, 1];
117        minSolution[i] = Encoding.Bounds[j, 0];
118      }
119      MaxSolutionDist = Euclidian(maxSolution, minSolution) / Data.Length;
120    }
121
122    #region Helpers
123    private static double Euclidian(IEnumerable<double> a, IEnumerable<double> b) {
124      return Math.Sqrt(a.Zip(b, (d, d1) => d - d1).Sum(d => d * d));
125    }
126    private static double Angular(RealVector a, RealVector b) {
127      var innerProduct = a.Zip(b, (x, y) => x * y).Sum();
128      var res = Math.Acos(innerProduct / (Norm(a) * Norm(b))) / Math.PI;
129      return double.IsNaN(res) ? 0 : res;
130    }
131    private static double Norm(IEnumerable<double> a) {
132      return Math.Sqrt(a.Sum(d => d * d));
133    }
134    private static RealVector Minus(RealVector a, RealVector b) {
135      return new RealVector(a.Zip(b, (d, d1) => d - d1).ToArray());
136    }
137
138    private void Search(RealVector vector, int k, out List<RealVector> nearestNeighbours, out List<double> distances) {
139      var neighbours = new SortedList<double, RealVector>(new DuplicateKeyComparer<double>());
140      foreach (var n in Data) neighbours.Add(Euclidian(n, vector), n);
141      nearestNeighbours = new List<RealVector>();
142
143      distances = new List<double>();
144      foreach (var entry in neighbours) {
145        nearestNeighbours.Add(entry.Value);
146        distances.Add(entry.Key);
147        if (distances.Count == k) break;
148      }
149    }
150    #endregion
151
152    public class DuplicateKeyComparer<TKey> : IComparer<TKey> where TKey : IComparable {
153      public int Compare(TKey x, TKey y) {
154        var result = x.CompareTo(y);
155        return result == 0 ? 1 : result;
156      }
157    }
158  }
159}
Note: See TracBrowser for help on using the repository browser.