1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
31 |
|
---|
32 | // ReSharper disable once CheckNamespace
|
---|
33 | namespace HeuristicLab.Algorithms.EGO {
|
---|
34 |
|
---|
35 | [StorableClass]
|
---|
36 | [Item("ExpectedQuantileImprovement", "Noisy InfillCriterion, Extension of the Expected Improvement as described in \n Noisy expectedimprovement and on - line computation time allocation for the optimization of simulators with tunable fidelitys\r\nPicheny, V., Ginsbourger, D., Richet, Y")]
|
---|
37 | public class ExpectedQuantileImprovement : ExpectedImprovementBase {
|
---|
38 |
|
---|
39 | #region Parameternames
|
---|
40 | public const string AlphaParameterName = "Alpha";
|
---|
41 | public const string MaxEvaluationsParameterName = "MaxEvaluations";
|
---|
42 | #endregion
|
---|
43 |
|
---|
44 | #region Parameters
|
---|
45 | public IFixedValueParameter<DoubleValue> AlphaParameter => Parameters[AlphaParameterName] as IFixedValueParameter<DoubleValue>;
|
---|
46 | public IValueParameter<IntValue> MaxEvaluationsParameter => Parameters[MaxEvaluationsParameterName] as IValueParameter<IntValue>;
|
---|
47 | #endregion
|
---|
48 |
|
---|
49 | #region Properties
|
---|
50 | public int MaxEvaluations => MaxEvaluationsParameter.Value.Value;
|
---|
51 | public double Alpha => AlphaParameter.Value.Value;
|
---|
52 | [Storable]
|
---|
53 | private double Tau;
|
---|
54 | #endregion
|
---|
55 |
|
---|
56 | #region HL-Constructors, Serialization and Cloning
|
---|
57 | [StorableConstructor]
|
---|
58 | protected ExpectedQuantileImprovement(bool deserializing) : base(deserializing) { }
|
---|
59 | protected ExpectedQuantileImprovement(ExpectedQuantileImprovement original, Cloner cloner) : base(original, cloner) {
|
---|
60 | Tau = original.Tau;
|
---|
61 | }
|
---|
62 | public ExpectedQuantileImprovement() {
|
---|
63 | Parameters.Add(new FixedValueParameter<DoubleValue>(AlphaParameterName, "The Alpha value specifiying the robustness of the \"effective best solution\". Recommended value is 1.0", new DoubleValue(1.0)));
|
---|
64 | Parameters.Add(new ValueParameter<IntValue>(MaxEvaluationsParameterName, "The maximum number of evaluations allowed for EGO", new IntValue(500)));
|
---|
65 | MaxEvaluationsParameter.Hidden = true;
|
---|
66 | }
|
---|
67 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
68 | return new ExpectedQuantileImprovement(this, cloner);
|
---|
69 | }
|
---|
70 | #endregion
|
---|
71 |
|
---|
72 | protected override double FindBestFitness(IConfidenceRegressionSolution solution) {
|
---|
73 | Tau = RegressionSolution.EstimatedTrainingValues.Zip(solution.ProblemData.TargetVariableTrainingValues, (d, d1) => Math.Abs(d - d1)).Average();
|
---|
74 | Tau = Tau * Tau / (MaxEvaluations - solution.ProblemData.Dataset.Rows % MaxEvaluations + 1);
|
---|
75 |
|
---|
76 | var index = solution.EstimatedTrainingValues.Zip(solution.EstimatedTrainingVariances, (m, s2) => m + Alpha * Math.Sqrt(s2)).ArgMin(x => x);
|
---|
77 | return solution.EstimatedTrainingValues.ToArray()[index];
|
---|
78 |
|
---|
79 | }
|
---|
80 |
|
---|
81 | protected override double Evaluate(RealVector vector, double estimatedFitness, double estimatedStandardDeviation) {
|
---|
82 | var s2 = estimatedStandardDeviation * estimatedStandardDeviation;
|
---|
83 | var penalty = Alpha * Math.Sqrt(Tau * s2 / (Tau + s2));
|
---|
84 | var yhat = estimatedFitness + (ExpensiveMaximization ? -penalty : penalty);
|
---|
85 | var s = Math.Sqrt(s2 * s2 / (Tau + s2));
|
---|
86 | return GetEstimatedImprovement(BestFitness, yhat, s, ExploitationWeight, ExpensiveMaximization);
|
---|
87 | }
|
---|
88 |
|
---|
89 | }
|
---|
90 | }
|
---|