1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | // ReSharper disable once CheckNamespace
|
---|
31 | namespace HeuristicLab.Algorithms.EGO {
|
---|
32 |
|
---|
33 | [StorableClass]
|
---|
34 | [Item("ExpectedImprovementMeassure", "Extension of the Expected Improvement to a weighted version by ANDRAS SÓBESTER , STEPHEN J. LEARY and ANDY J. KEANE in \n On the Design of Optimization Strategies Based on Global Response Surface Approximation Models")]
|
---|
35 | public sealed class ExpectedImprovement : ExpectedImprovementBase {
|
---|
36 | #region Constructors, Serialization and Cloning
|
---|
37 | [StorableConstructor]
|
---|
38 | private ExpectedImprovement(bool deserializing) : base(deserializing) { }
|
---|
39 | private ExpectedImprovement(ExpectedImprovement original, Cloner cloner) : base(original, cloner) { }
|
---|
40 | public ExpectedImprovement() { }
|
---|
41 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
42 | return new ExpectedImprovement(this, cloner);
|
---|
43 | }
|
---|
44 | #endregion
|
---|
45 |
|
---|
46 | public override double Evaluate(RealVector vector) {
|
---|
47 | var model = RegressionSolution.Model as IConfidenceRegressionModel;
|
---|
48 | var yhat = model.GetEstimation(vector);
|
---|
49 | var s = Math.Sqrt(model.GetVariance(vector));
|
---|
50 | return GetEstimatedImprovement(BestFitness, yhat, s, ExploitationWeight, ExpensiveMaximization);
|
---|
51 | }
|
---|
52 |
|
---|
53 | protected override double Evaluate(RealVector vector, double estimatedFitness, double estimatedStandardDeviation) {
|
---|
54 | return GetEstimatedImprovement(BestFitness, estimatedFitness, estimatedStandardDeviation, ExploitationWeight, ExpensiveMaximization);
|
---|
55 | }
|
---|
56 |
|
---|
57 | protected override double FindBestFitness(IConfidenceRegressionSolution solution) {
|
---|
58 | return ExpensiveMaximization ? solution.ProblemData.TargetVariableTrainingValues.Max() : solution.ProblemData.TargetVariableTrainingValues.Min();
|
---|
59 | }
|
---|
60 | }
|
---|
61 | }
|
---|