Free cookie consent management tool by TermsFeed Policy Generator

source: branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/EfficientGlobalOptimizationAlgorithm.cs @ 15689

Last change on this file since 15689 was 15343, checked in by bwerth, 7 years ago

#2745 added discretized EGO-version for use with IntegerVectors

File size: 29.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Threading;
26using HeuristicLab.Algorithms.DataAnalysis;
27using HeuristicLab.Analysis;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Data;
31using HeuristicLab.Encodings.RealVectorEncoding;
32using HeuristicLab.Optimization;
33using HeuristicLab.Parameters;
34using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
35using HeuristicLab.Problems.DataAnalysis;
36using HeuristicLab.Problems.Instances;
37using HeuristicLab.Random;
38
39namespace HeuristicLab.Algorithms.EGO {
40  [StorableClass]
41  [Creatable(CreatableAttribute.Categories.Algorithms, Priority = 95)]
42  [Item("EfficientGlobalOptimizationAlgorithm", "Solves a problem by sequentially learning a model, solving a subproblem on the model and evaluating the best found solution for this subproblem.")]
43  public class EfficientGlobalOptimizationAlgorithm : BasicAlgorithm, ISurrogateAlgorithm<RealVector> {
44    #region Basic-Alg-Essentials
45    public override bool SupportsPause => true;
46    public override Type ProblemType => typeof(SingleObjectiveBasicProblem<IEncoding>);
47    public new SingleObjectiveBasicProblem<IEncoding> Problem {
48      get { return (SingleObjectiveBasicProblem<IEncoding>)base.Problem; }
49      set { base.Problem = value; }
50    }
51    #endregion
52
53    #region ParameterNames
54    private const string GenerationSizeParameterName = "GenerationSize";
55    private const string InfillCriterionParameterName = "InfillCriterion";
56    private const string InfillOptimizationAlgorithmParameterName = "InfillOptimizationAlgorithm";
57    private const string InfillOptimizationRestartsParameterName = "InfillOptimizationRestarts";
58    private const string InitialEvaluationsParameterName = "Initial Evaluations";
59    private const string MaximumEvaluationsParameterName = "Maximum Evaluations";
60    private const string MaximumRuntimeParameterName = "Maximum Runtime";
61    private const string RegressionAlgorithmParameterName = "RegressionAlgorithm";
62    private const string SeedParameterName = "Seed";
63    private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
64    private const string MaximalDataSetSizeParameterName = "MaximalDataSetSize";
65    private const string RemoveDuplicatesParamterName = "RemoveDuplicates";
66    private const string InitialSamplesParameterName = "InitialSamplesFile";
67    private const string BaselineVectorParameterName = "BaselineVector";
68    private const string InitialSamplingPlanParamterName = "InitialSamplingPlan";
69    #endregion
70
71    #region ResultNames
72    private const string BestQualityResultName = "Best Quality";
73    private const string BestSolutionResultName = "Best Solution";
74    private const string EvaluatedSoultionsResultName = "EvaluatedSolutions";
75    private const string IterationsResultName = "Iterations";
76    private const string RegressionSolutionResultName = "Model";
77    private const string QualitiesChartResultName = "Qualities";
78    private const string BestQualitiesRowResultName = "Best Quality";
79    private const string CurrentQualitiesRowResultName = "Current Quality";
80    private const string WorstQualitiesRowResultName = "Worst Quality";
81    #endregion
82
83    #region ParameterProperties
84    public IFixedValueParameter<IntValue> GenerationSizeParemeter => Parameters[GenerationSizeParameterName] as IFixedValueParameter<IntValue>;
85    public IConstrainedValueParameter<IInfillCriterion> InfillCriterionParameter => Parameters[InfillCriterionParameterName] as IConstrainedValueParameter<IInfillCriterion>;
86    public IValueParameter<Algorithm> InfillOptimizationAlgorithmParameter => Parameters[InfillOptimizationAlgorithmParameterName] as IValueParameter<Algorithm>;
87    public IFixedValueParameter<IntValue> InfillOptimizationRestartsParemeter => Parameters[InfillOptimizationRestartsParameterName] as IFixedValueParameter<IntValue>;
88    public IFixedValueParameter<IntValue> InitialEvaluationsParameter => Parameters[InitialEvaluationsParameterName] as IFixedValueParameter<IntValue>;
89    public IFixedValueParameter<IntValue> MaximumEvaluationsParameter => Parameters[MaximumEvaluationsParameterName] as IFixedValueParameter<IntValue>;
90    public IFixedValueParameter<IntValue> MaximumRuntimeParameter => Parameters[MaximumRuntimeParameterName] as IFixedValueParameter<IntValue>;
91    public IValueParameter<IDataAnalysisAlgorithm<IRegressionProblem>> RegressionAlgorithmParameter => Parameters[RegressionAlgorithmParameterName] as IValueParameter<IDataAnalysisAlgorithm<IRegressionProblem>>;
92    public IFixedValueParameter<IntValue> SeedParameter => Parameters[SeedParameterName] as IFixedValueParameter<IntValue>;
93    public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter => Parameters[SetSeedRandomlyParameterName] as IFixedValueParameter<BoolValue>;
94    public IFixedValueParameter<IntValue> MaximalDataSetSizeParameter => Parameters[MaximalDataSetSizeParameterName] as IFixedValueParameter<IntValue>;
95    public IFixedValueParameter<BoolValue> RemoveDuplicatesParameter => Parameters[RemoveDuplicatesParamterName] as IFixedValueParameter<BoolValue>;
96    public IFixedValueParameter<FileValue> InitialSamplesParameter => Parameters[InitialSamplesParameterName] as IFixedValueParameter<FileValue>;
97    public IValueParameter<RealVector> BaselineVectorParameter => Parameters[BaselineVectorParameterName] as IValueParameter<RealVector>;
98    public IConstrainedValueParameter<IInitialSampling<RealVector>> InitialSamplingPlanParameter => Parameters[InitialSamplingPlanParamterName] as IConstrainedValueParameter<IInitialSampling<RealVector>>;
99    #endregion
100
101    #region Properties
102    public int GenerationSize => GenerationSizeParemeter.Value.Value;
103    public IInfillCriterion InfillCriterion => InfillCriterionParameter.Value;
104    public Algorithm InfillOptimizationAlgorithm => InfillOptimizationAlgorithmParameter.Value;
105    public int InfillOptimizationRestarts => InfillOptimizationRestartsParemeter.Value.Value;
106    public int InitialEvaluations => InitialEvaluationsParameter.Value.Value;
107    public int MaximumEvaluations => MaximumEvaluationsParameter.Value.Value;
108    public int MaximumRuntime => MaximumRuntimeParameter.Value.Value;
109    public IDataAnalysisAlgorithm<IRegressionProblem> RegressionAlgorithm => RegressionAlgorithmParameter.Value;
110    public int Seed => SeedParameter.Value.Value;
111    public bool SetSeedRandomly => SetSeedRandomlyParameter.Value.Value;
112    public int MaximalDatasetSize => MaximalDataSetSizeParameter.Value.Value;
113    private IEnumerable<Tuple<RealVector, double>> DataSamples => Samples.Count > MaximalDatasetSize && MaximalDatasetSize > 0
114      ? Samples.Skip(Samples.Count - MaximalDatasetSize)
115      : Samples;
116    private bool RemoveDuplicates => RemoveDuplicatesParameter.Value.Value;
117    private RealVector BaselineVector => BaselineVectorParameter.Value;
118    private IInitialSampling<RealVector> InitialSamplingPlan => InitialSamplingPlanParameter.Value;
119    #endregion
120
121    #region StorableProperties
122    [Storable]
123    private IRandom Random = new MersenneTwister();
124    [Storable]
125    private List<Tuple<RealVector, double>> Samples;
126    [Storable]
127    private List<Tuple<RealVector, double>> InitialSamples;
128    #endregion
129
130    #region ResultsProperties
131    private double ResultsBestQuality {
132      get { return ((DoubleValue)Results[BestQualityResultName].Value).Value; }
133      set { ((DoubleValue)Results[BestQualityResultName].Value).Value = value; }
134    }
135    private RealVector ResultsBestSolution {
136      get { return (RealVector)Results[BestSolutionResultName].Value; }
137      set { Results[BestSolutionResultName].Value = value; }
138    }
139    private int ResultsEvaluations {
140      get { return ((IntValue)Results[EvaluatedSoultionsResultName].Value).Value; }
141      set { ((IntValue)Results[EvaluatedSoultionsResultName].Value).Value = value; }
142    }
143    private int ResultsIterations {
144      get { return ((IntValue)Results[IterationsResultName].Value).Value; }
145      set { ((IntValue)Results[IterationsResultName].Value).Value = value; }
146    }
147    private DataTable ResultsQualities => (DataTable)Results[QualitiesChartResultName].Value;
148    private DataRow ResultsQualitiesBest => ResultsQualities.Rows[BestQualitiesRowResultName];
149    private DataRow ResultsQualitiesWorst => ResultsQualities.Rows[WorstQualitiesRowResultName];
150    private DataRow ResultsQualitiesIteration => ResultsQualities.Rows[CurrentQualitiesRowResultName];
151    private IRegressionSolution ResultsModel {
152      get { return (IRegressionSolution)Results[RegressionSolutionResultName].Value; }
153      set { Results[RegressionSolutionResultName].Value = value; }
154    }
155    #endregion
156
157    #region HLConstructors
158    [StorableConstructor]
159    protected EfficientGlobalOptimizationAlgorithm(bool deserializing) : base(deserializing) { }
160    [StorableHook(HookType.AfterDeserialization)]
161    protected void AfterDeseialization() {
162      RegisterEventhandlers();
163    }
164    protected EfficientGlobalOptimizationAlgorithm(EfficientGlobalOptimizationAlgorithm original, Cloner cloner) : base(original, cloner) {
165      Random = cloner.Clone(Random);
166      if (original.Samples != null) Samples = original.Samples.Select(x => new Tuple<RealVector, double>(cloner.Clone(x.Item1), x.Item2)).ToList();
167      if (original.InitialSamples != null) InitialSamples = original.InitialSamples.Select(x => new Tuple<RealVector, double>(cloner.Clone(x.Item1), x.Item2)).ToList();
168      RegisterEventhandlers();
169    }
170    public override IDeepCloneable Clone(Cloner cloner) { return new EfficientGlobalOptimizationAlgorithm(this, cloner); }
171    public EfficientGlobalOptimizationAlgorithm() {
172      IProblemInstanceExporter dummy = new RegressionProblem(); //this variable is irrelevant
173      //the dummy variable enforces a using-Statement for HeuristicLab.Problems.Instances
174      //"new ValueParameter<IDataAnalysisAlgorithm<IRegressionProblem>>" requires no using using-Statement, but nontheless it requires HeuristicLab.Problems.Instances to be referenced 
175      //Having HeuristicLab.Problems.Instances referenced but not used, causes the Essential-Unit-tests to fail.
176
177      var cmaes = new CMAEvolutionStrategy.CMAEvolutionStrategy {
178        MaximumGenerations = 300,
179        PopulationSize = 50
180      };
181      var model = new GaussianProcessRegression {
182        Problem = new RegressionProblem()
183      };
184      model.CovarianceFunctionParameter.Value = new CovarianceRationalQuadraticIso();
185      Parameters.Add(new FixedValueParameter<IntValue>(MaximumEvaluationsParameterName, "", new IntValue(int.MaxValue)));
186      Parameters.Add(new FixedValueParameter<IntValue>(InitialEvaluationsParameterName, "", new IntValue(10)));
187      Parameters.Add(new FixedValueParameter<IntValue>(MaximumRuntimeParameterName, "The maximum runtime in seconds after which the algorithm stops. Use -1 to specify no limit for the runtime", new IntValue(-1)));
188      Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
189      Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
190      Parameters.Add(new ValueParameter<IDataAnalysisAlgorithm<IRegressionProblem>>(RegressionAlgorithmParameterName, "The model used to approximate the problem", model));
191      Parameters.Add(new ValueParameter<Algorithm>(InfillOptimizationAlgorithmParameterName, "The algorithm used to solve the expected improvement subproblem", cmaes));
192      Parameters.Add(new FixedValueParameter<IntValue>(InfillOptimizationRestartsParameterName, "Number of restarts of the SubAlgortihm to avoid local optima", new IntValue(1)));
193      Parameters.Add(new FixedValueParameter<IntValue>(GenerationSizeParameterName, "Number points that are sampled every iteration (stadard EGO: 1)", new IntValue(1)));
194      Parameters.Add(new FixedValueParameter<IntValue>(MaximalDataSetSizeParameterName, "The maximum number of sample points used to generate the model. Set 0 or less to use always all samples ", new IntValue(-1)));
195      Parameters.Add(new FixedValueParameter<BoolValue>(RemoveDuplicatesParamterName, "Wether duplicate samples should be replaced by a single sample with an averaged quality. This GREATLY decreases the chance of ill conditioned models (unbuildable models) but is not theoretically sound as the model ignores the increasing certainty in this region"));
196      Parameters.Add(new FixedValueParameter<FileValue>(InitialSamplesParameterName, "The file specifying some initial samples used to jump start the algorithm. These samples are not counted as evaluations. If InitialEvaluations is more than the samples specified in the file, the rest is uniformly random generated and evaluated.", new FileValue()));
197      Parameters.Add(new ValueParameter<RealVector>(BaselineVectorParameterName, "A vector used to create a baseline, this vector is evaluated once and is not part of the modeling process (has no influence on algorithm performance)"));
198      var eqi = new ExpectedQuantileImprovement();
199      eqi.MaxEvaluationsParameter.Value = MaximumEvaluationsParameter.Value;
200      var criteria = new ItemSet<IInfillCriterion> { new ExpectedImprovement(), new AugmentedExpectedImprovement(), new ExpectedQuality(), eqi, new MinimalQuantileCriterium(), new PluginExpectedImprovement() };
201      Parameters.Add(new ConstrainedValueParameter<IInfillCriterion>(InfillCriterionParameterName, "Decision what value should decide the next sample", criteria, criteria.First()));
202      var intialSamplingPlans = new ItemSet<IInitialSampling<RealVector>> { new UniformRandomSampling(), new LatinHyperCubeDesignCreator() };
203      Parameters.Add(new ConstrainedValueParameter<IInitialSampling<RealVector>>(InitialSamplingPlanParamterName, "Determies the initial samples from which the first model can be built.", intialSamplingPlans, intialSamplingPlans.First()));
204      SetInfillProblem();
205      RegisterEventhandlers();
206    }
207    #endregion
208    public void SetInitialSamples(RealVector[] individuals, double[] qualities) {
209      InitialSamples = individuals.Zip(qualities, (individual, d) => new Tuple<RealVector, double>(individual, d)).ToList();
210    }
211    protected override void Initialize(CancellationToken cancellationToken) {
212      base.Initialize(cancellationToken);
213      //encoding
214      var enc = Problem.Encoding as RealVectorEncoding;
215      if (enc == null) throw new ArgumentException("The EGO algorithm can only be applied to RealVectorEncodings");
216      var infillProblem = InfillOptimizationAlgorithm.Problem as InfillProblem;
217      if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm has no InfillProblem. Troubles with Eventhandling?");
218
219      //random
220      if (SetSeedRandomly) SeedParameter.Value.Value = new System.Random().Next();
221      Random.Reset(Seed);
222      Samples = InitialSamples?.ToList() ?? new List<Tuple<RealVector, double>>();
223
224      //results
225      Results.Add(new Result(IterationsResultName, new IntValue(0)));
226      Results.Add(new Result(EvaluatedSoultionsResultName, new IntValue(Samples.Count)));
227      Results.Add(new Result(BestSolutionResultName, new RealVector(1)));
228      Results.Add(new Result(BestQualityResultName, new DoubleValue(Problem.Maximization ? double.MinValue : double.MaxValue)));
229      Results.Add(new Result(RegressionSolutionResultName, typeof(IRegressionSolution)));
230      var table = new DataTable(QualitiesChartResultName);
231      table.Rows.Add(new DataRow(BestQualitiesRowResultName));
232      table.Rows.Add(new DataRow(WorstQualitiesRowResultName));
233      table.Rows.Add(new DataRow(CurrentQualitiesRowResultName));
234      Results.Add(new Result(QualitiesChartResultName, table));
235      if (BaselineVector != null && BaselineVector.Length == enc.Length) Results.Add(new Result("BaselineValue", new DoubleValue(Evaluate(BaselineVector).Item2)));
236
237
238
239    }
240    protected override void Run(CancellationToken cancellationToken) {
241      //initial samples
242      if (Samples.Count < InitialEvaluations) {
243        var points = InitialSamplingPlan.GetSamples(InitialEvaluations - Samples.Count, Samples.Select(x => x.Item1).ToArray(), (RealVectorEncoding)Problem.Encoding, Random);
244        foreach (var t in points) {
245          try {
246            Samples.Add(Evaluate(t));
247            cancellationToken.ThrowIfCancellationRequested();
248          }
249          finally {
250            Analyze();
251          }
252        }
253      }
254      //adaptive samples
255      for (ResultsIterations = 0; ResultsEvaluations < MaximumEvaluations; ResultsIterations++) {
256        try {
257          ResultsModel = BuildModel(cancellationToken);
258          if (ResultsModel == null) break;
259          cancellationToken.ThrowIfCancellationRequested();
260          for (var i = 0; i < GenerationSize; i++) {
261            var samplepoint = OptimizeInfillProblem(cancellationToken);
262            var sample = Evaluate(samplepoint);
263            Samples.Add(sample);
264            cancellationToken.ThrowIfCancellationRequested();
265          }
266
267        }
268        finally {
269          Analyze();
270        }
271      }
272    }
273
274    #region Eventhandling
275    private void RegisterEventhandlers() {
276      DeregisterEventhandlers();
277      RegressionAlgorithmParameter.ValueChanged += OnModelAlgorithmChanged;
278      InfillOptimizationAlgorithmParameter.ValueChanged += OnInfillOptimizationAlgorithmChanged;
279      InfillOptimizationAlgorithm.ProblemChanged += InfillOptimizationProblemChanged;
280      InfillCriterionParameter.ValueChanged += InfillCriterionChanged;
281      InitialSamplesParameter.ToStringChanged += OnInitialSamplesChanged;
282
283
284    }
285    private void DeregisterEventhandlers() {
286      RegressionAlgorithmParameter.ValueChanged -= OnModelAlgorithmChanged;
287      InfillOptimizationAlgorithmParameter.ValueChanged -= OnInfillOptimizationAlgorithmChanged;
288      InfillOptimizationAlgorithm.ProblemChanged -= InfillOptimizationProblemChanged;
289      InfillCriterionParameter.ValueChanged -= InfillCriterionChanged;
290      InitialSamplesParameter.ToStringChanged -= OnInitialSamplesChanged;
291    }
292    private void OnInfillOptimizationAlgorithmChanged(object sender, EventArgs args) {
293      SetInfillProblem();
294      InfillOptimizationAlgorithm.ProblemChanged += InfillOptimizationProblemChanged;
295    }
296    private void InfillOptimizationProblemChanged(object sender, EventArgs e) {
297      InfillOptimizationAlgorithm.ProblemChanged -= InfillOptimizationProblemChanged;
298      SetInfillProblem();
299      InfillOptimizationAlgorithm.ProblemChanged += InfillOptimizationProblemChanged;
300    }
301    private void InfillCriterionChanged(object sender, EventArgs e) {
302      var infillProblem = InfillOptimizationAlgorithm.Problem as InfillProblem;
303      if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm has no InfillProblem. Troubles with Eventhandling?");
304      infillProblem.InfillCriterion = InfillCriterion;
305    }
306    private void OnModelAlgorithmChanged(object sender, EventArgs args) {
307      RegressionAlgorithm.Problem = new RegressionProblem();
308    }
309    private void OnInitialSamplesChanged(object sender, EventArgs args) { }
310    protected override void OnExecutionTimeChanged() {
311      base.OnExecutionTimeChanged();
312      if (CancellationTokenSource == null) return;
313      if (MaximumRuntime == -1) return;
314      if (ExecutionTime.TotalSeconds > MaximumRuntime) CancellationTokenSource.Cancel();
315    }
316    public override void Pause() {
317      if (InfillOptimizationAlgorithm.ExecutionState == ExecutionState.Started || InfillOptimizationAlgorithm.ExecutionState == ExecutionState.Paused) InfillOptimizationAlgorithm.Stop();
318      if (RegressionAlgorithm.ExecutionState == ExecutionState.Started || RegressionAlgorithm.ExecutionState == ExecutionState.Paused) RegressionAlgorithm.Stop();
319      base.Pause();
320    }
321    public override void Stop() {
322      if (InfillOptimizationAlgorithm.ExecutionState == ExecutionState.Started || InfillOptimizationAlgorithm.ExecutionState == ExecutionState.Paused) InfillOptimizationAlgorithm.Stop();
323      if (RegressionAlgorithm.ExecutionState == ExecutionState.Started || RegressionAlgorithm.ExecutionState == ExecutionState.Paused) RegressionAlgorithm.Stop();
324      base.Stop();
325    }
326    #endregion
327
328    #region helpers
329    private IRegressionSolution BuildModel(CancellationToken cancellationToken) {
330      var dataset = EgoUtilities.GetDataSet(DataSamples.ToList(), RemoveDuplicates);
331      var problemdata = new RegressionProblemData(dataset, dataset.VariableNames.Where(x => !x.Equals("output")), "output");
332      problemdata.TrainingPartition.Start = 0;
333      problemdata.TrainingPartition.End = dataset.Rows;
334      problemdata.TestPartition.Start = dataset.Rows;
335      problemdata.TestPartition.End = dataset.Rows;
336
337      //train
338      var problem = (RegressionProblem)RegressionAlgorithm.Problem;
339      problem.ProblemDataParameter.Value = problemdata;
340      var i = 0;
341      IRegressionSolution solution = null;
342
343      while (solution == null && i++ < 100) {
344        var results = EgoUtilities.SyncRunSubAlgorithm(RegressionAlgorithm, Random.Next(int.MaxValue), cancellationToken);
345        solution = results.Select(x => x.Value).OfType<IRegressionSolution>().SingleOrDefault();
346        cancellationToken.ThrowIfCancellationRequested();
347      }
348
349      //try creating a model with old hyperparameters and new dataset;
350      var gp = RegressionAlgorithm as GaussianProcessRegression;
351      var oldmodel = ResultsModel as GaussianProcessRegressionSolution;
352      if (gp != null && oldmodel != null) {
353        var n = Samples.First().Item1.Length;
354        var mean = (IMeanFunction)oldmodel.Model.MeanFunction.Clone();
355        var cov = (ICovarianceFunction)oldmodel.Model.CovarianceFunction.Clone();
356        if (mean.GetNumberOfParameters(n) != 0 || cov.GetNumberOfParameters(n) != 0) throw new ArgumentException("DEBUG: assumption about fixed paramters wrong");
357        var noise = 0.0;
358        double[] hyp = { noise };
359        try {
360          var model = new GaussianProcessModel(problemdata.Dataset, problemdata.TargetVariable,
361            problemdata.AllowedInputVariables, problemdata.TrainingIndices, hyp, mean, cov);
362          model.FixParameters();
363          var sol = new GaussianProcessRegressionSolution(model, problemdata);
364          if (solution == null || solution.TrainingMeanSquaredError > sol.TrainingMeanSquaredError) {
365            solution = sol;
366          }
367        }
368        catch (ArgumentException) { }
369      }
370
371
372      if (!ResultsQualities.Rows.ContainsKey("DEBUG: Degenerates")) ResultsQualities.Rows.Add(new DataRow("DEBUG: Degenerates"));
373      var row = ResultsQualities.Rows["DEBUG: Degenerates"];
374      row.Values.Add(i - 1);
375      if (solution == null) Results.Add(new Result("Status", new StringValue("The Algorithm did not return a Model")));
376      else {
377        if (!ResultsQualities.Rows.ContainsKey("DEBUG: RMSE")) ResultsQualities.Rows.Add(new DataRow("DEBUG: RMSE"));
378        row = ResultsQualities.Rows["DEBUG: RMSE"];
379        row.Values.Add(Math.Sqrt(solution.TrainingMeanSquaredError));
380      }
381
382      RegressionAlgorithm.Runs.Clear();
383      return solution;
384    }
385    private RealVector OptimizeInfillProblem(CancellationToken cancellationToken) {
386      //parameterize and check InfillProblem
387      var infillProblem = InfillOptimizationAlgorithm.Problem as InfillProblem;
388      if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm does not have an InfillProblem.");
389      if (infillProblem.InfillCriterion != InfillCriterion) throw new ArgumentException("InfillCiriterion for Problem is not correctly set.");
390      var enc = Problem.Encoding as RealVectorEncoding;
391      infillProblem.Encoding.Bounds = enc.Bounds;
392      infillProblem.Encoding.Length = enc.Length;
393      infillProblem.Initialize(ResultsModel, Problem.Maximization);
394
395
396
397      RealVector bestVector = null;
398      var bestValue = infillProblem.Maximization ? double.NegativeInfinity : double.PositiveInfinity;
399      for (var i = 0; i < InfillOptimizationRestarts; i++) {
400        //optimize
401        var res = EgoUtilities.SyncRunSubAlgorithm(InfillOptimizationAlgorithm, Random.Next(int.MaxValue), cancellationToken);
402        cancellationToken.ThrowIfCancellationRequested();
403        //extract results
404        if (!res.ContainsKey(InfillProblem.BestInfillSolutionResultName)) throw new ArgumentException("The InfillOptimizationAlgorithm did not return a best solution");
405        var v = res[InfillProblem.BestInfillSolutionResultName].Value as RealVector;
406        if (!res.ContainsKey(InfillProblem.BestInfillQualityResultName)) throw new ArgumentException("The InfillOptimizationAlgorithm did not return a best quality");
407        var d = res[InfillProblem.BestInfillQualityResultName].Value as DoubleValue;
408        if (d == null || v == null) throw new ArgumentException("The InfillOptimizationAlgorithm did not return the expected result types");
409        //check for improvement
410        if (infillProblem.Maximization != d.Value > bestValue) continue;
411        bestValue = d.Value;
412        bestVector = v;
413      }
414      InfillOptimizationAlgorithm.Runs.Clear();
415      return bestVector;
416    }
417
418    private void Analyze() {
419      ResultsEvaluations = Samples.Count;
420      var max = Samples.ArgMax(x => x.Item2);
421      var min = Samples.ArgMin(x => x.Item2);
422      var best = Samples[Problem.Maximization ? max : min];
423      ResultsBestQuality = best.Item2;
424      ResultsBestSolution = best.Item1;
425      ResultsQualitiesBest.Values.Add(ResultsBestQuality);
426      ResultsQualitiesIteration.Values.Add(Samples[Samples.Count - 1].Item2);
427      ResultsQualitiesWorst.Values.Add(Samples[Problem.Maximization ? min : max].Item2);
428      Problem.Analyze(Samples.Select(x => GetIndividual(x.Item1)).ToArray(), Samples.Select(x => x.Item2).ToArray(), Results, Random);
429      if (Samples.Count != 0 && Samples[0].Item1.Length == 2) AnalyzeSampleDistribution();
430      AnalyzePredictionCorrelation();
431    }
432
433    private void AnalyzeSampleDistribution() {
434      const string plotname = "DEBUG:Sample Distribution";
435      const string rowInit = "Initial Samples";
436      const string rowAll = "All Samples";
437      if (!Results.ContainsKey(plotname)) Results.Add(new Result(plotname, new ScatterPlot()));
438      var plot = (ScatterPlot)Results[plotname].Value;
439      if (!plot.Rows.ContainsKey(rowInit) && InitialSamples != null && InitialSamples.Count > 0)
440        plot.Rows.Add(new ScatterPlotDataRow(rowInit, "samples from inital file (already evaulated)", InitialSamples.Select(x => new Point2D<double>(x.Item1[0], x.Item1[1]))));
441      if (!plot.Rows.ContainsKey(rowAll)) plot.Rows.Add(new ScatterPlotDataRow(rowAll, "All samples", new Point2D<double>[0]));
442      else { plot.Rows[rowAll].Points.Clear(); }
443      plot.Rows[rowAll].Points.AddRange(Samples.Select(x => new Point2D<double>(x.Item1[0], x.Item1[1])));
444    }
445
446    private void AnalyzePredictionCorrelation() {
447      const string plotName = "Prediction";
448      const string rowName = "Samples";
449      const string lastrowName = "Last Sample";
450      if (!Results.ContainsKey(plotName)) Results.Add(new Result(plotName, new ScatterPlot()));
451      var plot = (ScatterPlot)Results[plotName].Value;
452      if (!plot.Rows.ContainsKey(rowName)) plot.Rows.Add(new ScatterPlotDataRow(rowName, rowName, new List<Point2D<double>>()));
453      if (!plot.Rows.ContainsKey(lastrowName)) plot.Rows.Add(new ScatterPlotDataRow(lastrowName, lastrowName, new List<Point2D<double>>()));
454      var p = Samples[Samples.Count - 1];
455      if (ResultsModel != null) plot.Rows[rowName].Points.Add(new Point2D<double>(ResultsModel.Model.GetEstimation(p.Item1), p.Item2, p.Item1));
456      plot.VisualProperties.YAxisTitle = "True Objective Value";
457      plot.VisualProperties.XAxisTitle = "Predicted Objective Value";
458
459    }
460
461    private Individual GetIndividual(RealVector r) {
462      var scope = new Scope();
463      scope.Variables.Add(new Variable(Problem.Encoding.Name, r));
464      return new SingleEncodingIndividual(Problem.Encoding, scope);
465    }
466    private Tuple<RealVector, double> Evaluate(RealVector point) {
467      return new Tuple<RealVector, double>(point, Problem.Evaluate(GetIndividual(point), Random));
468    }
469
470    private void SetInfillProblem() {
471      InfillOptimizationAlgorithm.Problem = new InfillProblem { InfillCriterion = InfillCriterion };
472    }
473    #endregion
474  }
475}
Note: See TracBrowser for help on using the repository browser.