Free cookie consent management tool by TermsFeed Policy Generator

source: branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/DiscreteEGO/DiscreteSampleCollector.cs @ 16101

Last change on this file since 16101 was 15976, checked in by jkarder, 7 years ago

#2745: worked on EGO implementation

  • added parameter for initial sample set (only for D-EGO)
  • fixed project references and output paths
  • minor changes
File size: 3.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.IntegerVectorEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis;
32
33namespace HeuristicLab.Algorithms.EGO {
34  [Item("DiscreteSampleCollector", "Collects IntegerVectors into a modifiablbe dataset")]
35  [StorableClass]
36  public class DiscreteSampleCollector : InstrumentedOperator {
37    public override bool CanChangeName => true;
38
39    public ILookupParameter<IntegerVector> IntegerVectorParameter => (ILookupParameter<IntegerVector>)Parameters["IntegerVector"];
40    public ILookupParameter<DoubleValue> QualityParameter => (ILookupParameter<DoubleValue>)Parameters["Quality"];
41    public ILookupParameter<ModifiableDataset> DatasetParameter => (ILookupParameter<ModifiableDataset>)Parameters["Dataset"];
42
43    [StorableConstructor]
44    protected DiscreteSampleCollector(bool deserializing) : base(deserializing) { }
45    protected DiscreteSampleCollector(DiscreteSampleCollector original, Cloner cloner) : base(original, cloner) { }
46    public DiscreteSampleCollector() {
47      Parameters.Add(new LookupParameter<IntegerVector>("IntegerVector", "The vector which should be collected."));
48      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality associated which this vector"));
49      Parameters.Add(new LookupParameter<ModifiableDataset>("Dataset", "The Dataset in wich new samples are stored."));
50    }
51
52    public override IDeepCloneable Clone(Cloner cloner) {
53      return new DiscreteSampleCollector(this, cloner);
54    }
55
56    public sealed override IOperation InstrumentedApply() {
57      var vector = IntegerVectorParameter.ActualValue;
58      var quality = QualityParameter.ActualValue.Value;
59      var data = DatasetParameter.ActualValue;
60
61      if (data.Columns != vector.Length + 1) {
62        if (data.Columns != 0 || data.Rows != 0) throw new OperatorExecutionException(this, "dataset columns do not match samplesize+1");
63        var variableNames = vector.Select((x, i) => string.Format("input" + i)).Concat("output".ToEnumerable());
64        var variableValues = vector.Select(x => (double)x).Concat(quality.ToEnumerable()).Select(x => new List<double> { x });
65        data = DatasetParameter.ActualValue = new ModifiableDataset(variableNames, variableValues);
66      } else AddRow(data, vector, quality);
67
68      return base.InstrumentedApply();
69    }
70
71
72    private static void AddRow(ModifiableDataset data, IntegerVector vector, double quality) {
73      var row = new object[vector.Length + 1];
74      for (var i = 0; i < vector.Length; i++)
75        row[i] = (double)vector[i];
76      row[vector.Length] = quality;
77      data.AddRow(row);
78    }
79
80
81
82  }
83}
Note: See TracBrowser for help on using the repository browser.