[8670] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Common;
|
---|
| 29 | using HeuristicLab.PDPSimulation.DomainModel;
|
---|
| 30 | using System.Threading;
|
---|
| 31 | using HeuristicLab.Problems.VehicleRouting.Interfaces;
|
---|
| 32 | using HeuristicLab.Problems.VehicleRouting;
|
---|
| 33 | using HeuristicLab.Problems.VehicleRouting.Variants;
|
---|
| 34 | using HeuristicLab.Problems.VehicleRouting.ProblemInstances;
|
---|
| 35 | using HeuristicLab.PDPSimulation.Operators;
|
---|
| 36 | using HeuristicLab.Parameters;
|
---|
| 37 | using HeuristicLab.Data;
|
---|
| 38 | using System.Threading.Tasks;
|
---|
| 39 | using HeuristicLab.Problems.VehicleRouting.Encodings.Potvin;
|
---|
| 40 |
|
---|
| 41 | namespace HeuristicLab.PDPSimulation {
|
---|
| 42 | [Item("PFIHReoptimization", "A pickup and delivery PFIH optimization.")]
|
---|
| 43 | [StorableClass]
|
---|
| 44 | public class PFIHReoptimization : DynamicPDPOptimization {
|
---|
| 45 | public IValueParameter<DoubleValue> Alpha {
|
---|
| 46 | get { return (IValueParameter<DoubleValue>)Parameters["Alpha"]; }
|
---|
| 47 | }
|
---|
| 48 | public IValueParameter<DoubleValue> AlphaVariance {
|
---|
| 49 | get { return (IValueParameter<DoubleValue>)Parameters["AlphaVariance"]; }
|
---|
| 50 | }
|
---|
| 51 | public IValueParameter<DoubleValue> Beta {
|
---|
| 52 | get { return (IValueParameter<DoubleValue>)Parameters["Beta"]; }
|
---|
| 53 | }
|
---|
| 54 | public IValueParameter<DoubleValue> BetaVariance {
|
---|
| 55 | get { return (IValueParameter<DoubleValue>)Parameters["BetaVariance"]; }
|
---|
| 56 | }
|
---|
| 57 | public IValueParameter<DoubleValue> Gamma {
|
---|
| 58 | get { return (IValueParameter<DoubleValue>)Parameters["Gamma"]; }
|
---|
| 59 | }
|
---|
| 60 | public IValueParameter<DoubleValue> GammaVariance {
|
---|
| 61 | get { return (IValueParameter<DoubleValue>)Parameters["GammaVariance"]; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | public ValueParameter<IntValue> SampleSizeParameter {
|
---|
| 65 | get { return (ValueParameter<IntValue>)Parameters["SampleSize"]; }
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public ValueParameter<BoolValue> ComputeInParallelParameter {
|
---|
| 69 | get { return (ValueParameter<BoolValue>)Parameters["ComputeInParallel"]; }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | public PFIHReoptimization(): base() {
|
---|
| 73 | Parameters.Add(new ValueParameter<DoubleValue>("Alpha", "The alpha value.", new DoubleValue(0.7)));
|
---|
| 74 | Parameters.Add(new ValueParameter<DoubleValue>("AlphaVariance", "The alpha variance.", new DoubleValue(0.5)));
|
---|
| 75 | Parameters.Add(new ValueParameter<DoubleValue>("Beta", "The beta value.", new DoubleValue(0.1)));
|
---|
| 76 | Parameters.Add(new ValueParameter<DoubleValue>("BetaVariance", "The beta variance.", new DoubleValue(0.07)));
|
---|
| 77 | Parameters.Add(new ValueParameter<DoubleValue>("Gamma", "The gamma value.", new DoubleValue(0.2)));
|
---|
| 78 | Parameters.Add(new ValueParameter<DoubleValue>("GammaVariance", "The gamma variance.", new DoubleValue(0.14)));
|
---|
| 79 |
|
---|
| 80 | Parameters.Add(new ValueParameter<IntValue>("SampleSize", "The sample size.", new IntValue(10)));
|
---|
| 81 | Parameters.Add(new ValueParameter<BoolValue>("ComputeInParallel", "Indicates if the samples should be computed in parallel.", new BoolValue(true)));
|
---|
| 82 | }
|
---|
| 83 | [StorableConstructor]
|
---|
| 84 | private PFIHReoptimization(bool deserializing) : base(deserializing) {
|
---|
| 85 | }
|
---|
| 86 | private PFIHReoptimization(PFIHReoptimization original, Cloner cloner)
|
---|
| 87 | : base(original, cloner) {
|
---|
| 88 | }
|
---|
| 89 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 90 | return new PFIHReoptimization(this, cloner);
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | class PFIHResult {
|
---|
| 94 | public PFIHResult() {
|
---|
| 95 | bestFeasible = false;
|
---|
| 96 | bestQuality = double.MaxValue;
|
---|
| 97 | bestSolution = null;
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | public bool bestFeasible;
|
---|
| 101 | public double bestQuality;
|
---|
| 102 | public IVRPEncoding bestSolution;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | private IVRPEncoding Optimize(DynamicPDProblemInstance instance) {
|
---|
| 106 | List<bool> vehicleUsed = new List<bool>();
|
---|
| 107 | for (int i = 0; i < instance.StaticInstance.Vehicles.Value; i++) {
|
---|
| 108 | Vehicle vehicle = GetVehicle(instance.GetVehicle(i));
|
---|
| 109 | vehicleUsed.Add(vehicle.Distance > 0);
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | int sampleSize = SampleSizeParameter.Value.Value;
|
---|
| 113 | PFIHResult bestResult = new PFIHResult();
|
---|
| 114 |
|
---|
| 115 | var options = new ParallelOptions();
|
---|
| 116 | if (ComputeInParallelParameter.Value.Value)
|
---|
| 117 | options.MaxDegreeOfParallelism = Math.Max(Environment.ProcessorCount - 1, 1);
|
---|
| 118 | else
|
---|
| 119 | options.MaxDegreeOfParallelism = 1;
|
---|
| 120 |
|
---|
| 121 | IRandom random = new HeuristicLab.Random.MersenneTwister(1234);
|
---|
| 122 |
|
---|
| 123 | Parallel.For<PFIHResult>(0, sampleSize, options,
|
---|
| 124 | () => new PFIHResult(),
|
---|
| 125 | (i, loop, result) => {
|
---|
| 126 | IVRPEncoding current = DynPushForwardInsertionCreator.CreateSolution(instance.StaticInstance,
|
---|
| 127 | random, vehicleUsed,
|
---|
| 128 | Alpha.Value.Value, Beta.Value.Value, Gamma.Value.Value,
|
---|
| 129 | AlphaVariance.Value.Value, BetaVariance.Value.Value, GammaVariance.Value.Value);
|
---|
| 130 |
|
---|
| 131 | VRPEvaluation eval = instance.StaticInstance.Evaluate(current);
|
---|
| 132 | double quality = eval.Quality;
|
---|
| 133 | bool feasible = instance.StaticInstance.Feasible(eval);
|
---|
| 134 |
|
---|
| 135 | if ((feasible && !result.bestFeasible) || (feasible == result.bestFeasible && quality < result.bestQuality)) {
|
---|
| 136 | result.bestQuality = quality;
|
---|
| 137 | result.bestSolution = current;
|
---|
| 138 | result.bestFeasible = feasible;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | return result;
|
---|
| 142 | },
|
---|
| 143 | (result) => {
|
---|
| 144 | lock (bestResult) {
|
---|
| 145 | if ((result.bestFeasible && !bestResult.bestFeasible) || (result.bestFeasible == bestResult.bestFeasible && result.bestQuality < bestResult.bestQuality)) {
|
---|
| 146 | bestResult.bestQuality = result.bestQuality;
|
---|
| 147 | bestResult.bestSolution = result.bestSolution;
|
---|
| 148 | bestResult.bestFeasible = result.bestFeasible;
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
| 151 | }
|
---|
| 152 | );
|
---|
| 153 |
|
---|
| 154 | //Recourse
|
---|
| 155 | if (!bestResult.bestFeasible) {
|
---|
| 156 | PotvinEncoding currentPlan = (instance.StaticInstance as DynPDPProblemInstance).CurrentPlan;
|
---|
| 157 | BestInsertion.RouteUnrouted(instance.StaticInstance, currentPlan);
|
---|
| 158 | bestResult.bestSolution = currentPlan;
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | return bestResult.bestSolution;
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | protected override bool PerformOptimization(DynamicPDProblemInstance instance, ChangeInformation changeInformation) {
|
---|
| 165 |
|
---|
| 166 | IVRPEncoding solution = Optimize(instance);
|
---|
| 167 | PerformPlan(solution);
|
---|
| 168 |
|
---|
| 169 | return true;
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 | }
|
---|