1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Text;
|
---|
25 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
26 | namespace HeuristicLab.Random.Tests {
|
---|
27 |
|
---|
28 | [TestClass()]
|
---|
29 | public class RandomEnumerableSampleTest {
|
---|
30 | [TestMethod]
|
---|
31 | [TestCategory("Problems.Random")]
|
---|
32 | [TestProperty("Time", "short")]
|
---|
33 | public void SampleProportionalWithoutRepetitionTest() {
|
---|
34 | {
|
---|
35 | // select 1 of 100 uniformly (weights = 0)
|
---|
36 | var items = Enumerable.Range(0, 100);
|
---|
37 | var random = new MersenneTwister(31415);
|
---|
38 | var weights = Enumerable.Repeat(0.0, 100);
|
---|
39 | for (int i = 0; i < 1000; i++) {
|
---|
40 | var sample =
|
---|
41 | RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 1, weights, false, false).ToArray();
|
---|
42 | Assert.AreEqual(sample.Count(), 1);
|
---|
43 | Assert.AreEqual(sample.Distinct().Count(), 1);
|
---|
44 | }
|
---|
45 | }
|
---|
46 | {
|
---|
47 | // select 1 of 1 uniformly (weights = 0)
|
---|
48 | var items = Enumerable.Range(0, 1);
|
---|
49 | var random = new MersenneTwister(31415);
|
---|
50 | var weights = Enumerable.Repeat(0.0, 1);
|
---|
51 | for (int i = 0; i < 1000; i++) {
|
---|
52 | var sample =
|
---|
53 | RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 1, weights, false, false).ToArray();
|
---|
54 | Assert.AreEqual(sample.Count(), 1);
|
---|
55 | Assert.AreEqual(sample.Distinct().Count(), 1);
|
---|
56 | }
|
---|
57 | }
|
---|
58 | {
|
---|
59 | // select 1 of 2 non-uniformly (weights = 1, 2)
|
---|
60 | var items = Enumerable.Range(0, 2);
|
---|
61 | var random = new MersenneTwister(31415);
|
---|
62 | var weights = new double[] { 1.0, 2.0 };
|
---|
63 | for (int i = 0; i < 1000; i++) {
|
---|
64 | var sample =
|
---|
65 | RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 1, weights, false, false).ToArray();
|
---|
66 | Assert.AreEqual(sample.Count(), 1);
|
---|
67 | Assert.AreEqual(sample.Distinct().Count(), 1);
|
---|
68 | }
|
---|
69 | }
|
---|
70 | {
|
---|
71 | // select 2 of 2 non-uniformly (weights = 1, 1000)
|
---|
72 | var items = Enumerable.Range(0, 2);
|
---|
73 | var random = new MersenneTwister(31415);
|
---|
74 | var weights = new double[] { 1.0, 1000.0 };
|
---|
75 | for (int i = 0; i < 1000; i++) {
|
---|
76 | var sample =
|
---|
77 | RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 1, weights, false, false).ToArray();
|
---|
78 | Assert.AreEqual(sample.Count(), 1);
|
---|
79 | Assert.AreEqual(sample.Distinct().Count(), 1);
|
---|
80 | }
|
---|
81 | }
|
---|
82 | {
|
---|
83 | // select 2 from 1 uniformly (weights = 0), this does not throw an exception but instead returns a sample with 1 element!
|
---|
84 | var items = Enumerable.Range(0, 1);
|
---|
85 | var random = new MersenneTwister(31415);
|
---|
86 | var weights = Enumerable.Repeat(0.0, 1);
|
---|
87 | var sample =
|
---|
88 | RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 2, weights, false, false).ToArray();
|
---|
89 | Assert.AreEqual(sample.Count(), 1);
|
---|
90 | }
|
---|
91 |
|
---|
92 | {
|
---|
93 | // select 10 of 100 uniformly (weights = 0)
|
---|
94 | var items = Enumerable.Range(0, 100);
|
---|
95 | var random = new MersenneTwister(31415);
|
---|
96 | var weights = Enumerable.Repeat(0.0, 100);
|
---|
97 | for (int i = 0; i < 1000; i++) {
|
---|
98 | var sample =
|
---|
99 | RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 10, weights, false, false).ToArray();
|
---|
100 | Assert.AreEqual(sample.Count(), 10);
|
---|
101 | Assert.AreEqual(sample.Distinct().Count(), 10);
|
---|
102 | }
|
---|
103 | }
|
---|
104 |
|
---|
105 | {
|
---|
106 | // select 100 of 100 uniformly (weights = 0)
|
---|
107 | var items = Enumerable.Range(0, 100);
|
---|
108 | var random = new MersenneTwister(31415);
|
---|
109 | var weights = Enumerable.Repeat(0.0, 100);
|
---|
110 | for (int i = 0; i < 1000; i++) {
|
---|
111 | var sample =
|
---|
112 | RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 100, weights, false, false).ToArray();
|
---|
113 | Assert.AreEqual(sample.Count(), 100);
|
---|
114 | Assert.AreEqual(sample.Distinct().Count(), 100);
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | {
|
---|
119 | // select 10 of 10 uniformly (weights = 1)
|
---|
120 | var items = Enumerable.Range(0, 10);
|
---|
121 | var random = new MersenneTwister(31415);
|
---|
122 | var weights = Enumerable.Repeat(1.0, 10);
|
---|
123 | for (int i = 0; i < 1000; i++) {
|
---|
124 |
|
---|
125 | var sample =
|
---|
126 | RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 10, weights, false, false).ToArray();
|
---|
127 | Assert.AreEqual(sample.Count(), 10);
|
---|
128 | Assert.AreEqual(sample.Distinct().Count(), 10);
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | {
|
---|
133 | // select 10 of 10 uniformly (weights = 1)
|
---|
134 | // repeat 1000000 times and calculate statistics
|
---|
135 | var items = Enumerable.Range(0, 100);
|
---|
136 | var random = new MersenneTwister(31415);
|
---|
137 | var weights = Enumerable.Repeat(1.0, 100);
|
---|
138 | var selectionCount = new int[100, 100]; // frequency of selecting item at pos
|
---|
139 | for (int i = 0; i < 1000000; i++) {
|
---|
140 | var sample = RandomEnumerable.SampleProportionalWithoutRepetition(items, random, 100, weights, false, false).ToArray();
|
---|
141 | Assert.AreEqual(sample.Count(), 100);
|
---|
142 | Assert.AreEqual(sample.Distinct().Count(), 100);
|
---|
143 |
|
---|
144 | int pos = 0;
|
---|
145 | foreach (var item in sample) {
|
---|
146 | selectionCount[item, pos]++;
|
---|
147 | pos++;
|
---|
148 | }
|
---|
149 | }
|
---|
150 | var sb = new StringBuilder();
|
---|
151 | for (int item = 0; item < 100; item++) {
|
---|
152 | for (int pos = 0; pos < 100; pos++) {
|
---|
153 | sb.AppendFormat("{0} ", selectionCount[item, pos]);
|
---|
154 | }
|
---|
155 | sb.AppendLine();
|
---|
156 | }
|
---|
157 | Console.WriteLine(sb.ToString());
|
---|
158 | }
|
---|
159 | }
|
---|
160 | }
|
---|
161 | }
|
---|