Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataPreprocessing/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/TransformationToSymbolicTreeMapper.cs @ 10884

Last change on this file since 10884 was 10878, checked in by pfleck, 11 years ago
  • Fixed bug in backtransformation when model contains same variable multiple times.
File size: 11.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
24using HeuristicLab.Problems.DataAnalysis.Transformations;
25
26namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
27  public class TransformationToSymbolicTreeMapper : ITransformationMapper<ISymbolicExpressionTreeNode> {
28    private ITransformation transformation;
29    private string column;
30
31    #region ITransformationMapper<ISymbolicExpressionTree> Members
32
33    public ISymbolicExpressionTreeNode GenerateModel(ITransformation transformation) {
34      InitComponents(transformation);
35
36      if (transformation is LinearTransformation) {
37        return GenerateModelForLinearTransformation();
38      } else if (transformation is ExponentialTransformation) {
39        return GenerateModelForExponentialTransformation();
40      } else if (transformation is LogarithmicTransformation) {
41        return GenerateModelForLogarithmicTransformation();
42      } else if (transformation is PowerTransformation) {
43        return GenerateModelForPowerTransformation();
44      } else if (transformation is ReciprocalTransformation) {
45        return GenerateModelForReciprocalTransformation();
46      } else if (transformation is ShiftStandardDistributionTransformation) {
47        return GenerateModelForShiftStandardDistributionTransformation();
48      }
49      throw new NotImplementedException();
50    }
51
52    public ISymbolicExpressionTreeNode GenerateInverseModel(ITransformation transformation) {
53      InitComponents(transformation);
54
55      if (transformation is LinearTransformation) {
56        return GenerateInverseModelForLinearTransformation();
57      } else if (transformation is ExponentialTransformation) {
58        return GenerateInverseModelForExponentialTransformation();
59      } else if (transformation is LogarithmicTransformation) {
60        return GenerateInverseModelForLogarithmicTransformation();
61      } else if (transformation is PowerTransformation) {
62        return GenerateInverseModelForPowerTransformation();
63      } else if (transformation is ReciprocalTransformation) {
64        return GenerateInverseModelForReciprocalTransformation();
65      } else if (transformation is ShiftStandardDistributionTransformation) {
66        GenerateInverseModelForShiftStandardDistributionTransformation();
67      }
68
69      throw new NotImplementedException();
70    }
71
72    #endregion
73
74    // helper
75
76    private ISymbolicExpressionTreeNode GenerateModelForLinearTransformation() {
77      var linearTransformation = (LinearTransformation)transformation;
78      var kValue = linearTransformation.Multiplier;
79      var dValue = linearTransformation.Addend;
80
81      // k * x
82      var multiplicationNode = new Multiplication().CreateTreeNode();
83      var kNode = CreateConstantTreeNode("k", kValue);
84      var xNode = CreateVariableTreeNode(column, "x");
85      multiplicationNode.AddSubtree(kNode);
86      multiplicationNode.AddSubtree(xNode);
87
88      // ( k * x ) + d
89      var additionNode = new Addition().CreateTreeNode();
90      var dNode = CreateConstantTreeNode("d", dValue);
91      additionNode.AddSubtree(multiplicationNode);
92      additionNode.AddSubtree(dNode);
93
94      return additionNode;
95    }
96
97    private ISymbolicExpressionTreeNode GenerateInverseModelForLinearTransformation() {
98      var linearTransformation = (LinearTransformation)transformation;
99      var kValue = linearTransformation.Multiplier;
100      var dValue = linearTransformation.Addend;
101
102      // x - d
103      var substractionNode = new Subtraction().CreateTreeNode();
104      var dNode = CreateConstantTreeNode("d", dValue);
105      var xNode = CreateVariableTreeNode(column, "x");
106      substractionNode.AddSubtree(xNode);
107      substractionNode.AddSubtree(dNode);
108
109      // ( x - d ) / k
110      var divisionNode = new Division().CreateTreeNode();
111      var kNode = CreateConstantTreeNode("k", kValue);
112      divisionNode.AddSubtree(substractionNode);
113      divisionNode.AddSubtree(kNode);
114
115      return divisionNode;
116    }
117
118
119    private ISymbolicExpressionTreeNode GenerateModelForExponentialTransformation() {
120      var exponentialTransformation = (ExponentialTransformation)transformation;
121      var bValue = exponentialTransformation.Base;
122
123      return GenTreePow_b_x(bValue);
124    }
125
126    private ISymbolicExpressionTreeNode GenerateInverseModelForExponentialTransformation() {
127      var exponentialTransformation = (ExponentialTransformation)transformation;
128      var bValue = exponentialTransformation.Base;
129
130      return GenTreeLog_x_b(bValue);
131    }
132
133
134    private ISymbolicExpressionTreeNode GenerateModelForLogarithmicTransformation() {
135      var logarithmicTransformation = (LogarithmicTransformation)transformation;
136      var bValue = logarithmicTransformation.Base;
137
138      return GenTreeLog_x_b(bValue);
139    }
140
141    private ISymbolicExpressionTreeNode GenerateInverseModelForLogarithmicTransformation() {
142      var logarithmicTransformation = (LogarithmicTransformation)transformation;
143      var bValue = logarithmicTransformation.Base;
144
145      return GenTreePow_b_x(bValue);
146    }
147
148
149    private ISymbolicExpressionTreeNode GenerateModelForPowerTransformation() {
150      var powerTransformation = (PowerTransformation)transformation;
151      var expValue = powerTransformation.Exponent;
152
153      // x ^ exp
154      var powerNode = new Power().CreateTreeNode();
155      var xNode = CreateVariableTreeNode(column, "x");
156      var expNode = CreateConstantTreeNode("exp", expValue);
157      powerNode.AddSubtree(xNode);
158      powerNode.AddSubtree(expNode);
159
160      return powerNode;
161    }
162
163    private ISymbolicExpressionTreeNode GenerateInverseModelForPowerTransformation() {
164      var powerTransformation = (PowerTransformation)transformation;
165      var expValue = powerTransformation.Exponent;
166
167      // rt(x, b)
168      var rootNode = new Root().CreateTreeNode();
169      var xNode = CreateVariableTreeNode(column, "x");
170      var bNode = CreateConstantTreeNode("b", expValue);
171      rootNode.AddSubtree(xNode);
172      rootNode.AddSubtree(bNode);
173
174      return rootNode;
175    }
176
177
178    private ISymbolicExpressionTreeNode GenerateModelForReciprocalTransformation() {
179      return GenTreeDiv_1_x();
180    }
181
182    private ISymbolicExpressionTreeNode GenerateInverseModelForReciprocalTransformation() {
183      return GenTreeDiv_1_x();
184    }
185
186
187    private ISymbolicExpressionTreeNode GenerateModelForShiftStandardDistributionTransformation() {
188      var shiftStandardDistributionTransformation = (ShiftStandardDistributionTransformation)transformation;
189      var m_orgValue = shiftStandardDistributionTransformation.OriginalMean;
190      var s_orgValue = shiftStandardDistributionTransformation.OriginalStandardDeviation;
191      var m_tarValue = shiftStandardDistributionTransformation.Mean;
192      var s_tarValue = shiftStandardDistributionTransformation.StandardDeviation;
193
194      return GenTreeShiftStdDist(column, m_orgValue, s_orgValue, m_tarValue, s_tarValue);
195    }
196
197    private ISymbolicExpressionTreeNode GenerateInverseModelForShiftStandardDistributionTransformation() {
198      var shiftStandardDistributionTransformation = (ShiftStandardDistributionTransformation)transformation;
199      var m_orgValue = shiftStandardDistributionTransformation.OriginalMean;
200      var s_orgValue = shiftStandardDistributionTransformation.OriginalStandardDeviation;
201      var m_tarValue = shiftStandardDistributionTransformation.Mean;
202      var s_tarValue = shiftStandardDistributionTransformation.StandardDeviation;
203
204      return GenTreeShiftStdDist(column, m_tarValue, s_tarValue, m_orgValue, s_orgValue);
205    }
206
207    // helper's helper:
208
209    private ISymbolicExpressionTreeNode GenTreeLog_x_b(double b) {
210      // log(x, b)
211      var logNode = new Logarithm().CreateTreeNode();
212      var bNode = CreateConstantTreeNode("b", b);
213      var xNode = CreateVariableTreeNode(column, "x");
214      logNode.AddSubtree(xNode);
215      logNode.AddSubtree(bNode);
216
217      return logNode;
218    }
219
220    private ISymbolicExpressionTreeNode GenTreePow_b_x(double b) {
221      // b ^ x
222      var powerNode = new Power().CreateTreeNode();
223      var bNode = CreateConstantTreeNode("b", b);
224      var xNode = CreateVariableTreeNode(column, "x");
225      powerNode.AddSubtree(bNode);
226      powerNode.AddSubtree(xNode);
227
228      return powerNode;
229    }
230
231    private ISymbolicExpressionTreeNode GenTreeDiv_1_x() {
232      // 1 / x
233      var divNode = new Division().CreateTreeNode();
234      var oneNode = CreateConstantTreeNode("1", 1.0);
235      var xNode = CreateVariableTreeNode(column, "x");
236      divNode.AddSubtree(oneNode);
237      divNode.AddSubtree(xNode);
238
239      return divNode;
240    }
241
242    private ISymbolicExpressionTreeNode GenTreeShiftStdDist(string variable, double m_org, double s_org, double m_tar, double s_tar) {
243      // x - m_org
244      var substractionNode = new Subtraction().CreateTreeNode();
245      var xNode = CreateVariableTreeNode(variable, "x");
246      var m_orgNode = CreateConstantTreeNode("m_org", m_org);
247      substractionNode.AddSubtree(xNode);
248      substractionNode.AddSubtree(m_orgNode);
249
250      // (x - m_org) / s_org
251      var divisionNode = new Division().CreateTreeNode();
252      var s_orgNode = CreateConstantTreeNode("s_org", s_org);
253      divisionNode.AddSubtree(substractionNode);
254      divisionNode.AddSubtree(s_orgNode);
255
256      // ((x - m_org) / s_org ) * s_tar
257      var multiplicationNode = new Multiplication().CreateTreeNode();
258      var s_tarNode = CreateConstantTreeNode("s_tar", s_tar);
259      multiplicationNode.AddSubtree(divisionNode);
260      multiplicationNode.AddSubtree(s_tarNode);
261
262      // ((x - m_org) / s_org ) * s_tar + m_tar
263      var additionNode = new Addition().CreateTreeNode();
264      var m_tarNode = CreateConstantTreeNode("m_tar", m_tar);
265      additionNode.AddSubtree(multiplicationNode);
266      additionNode.AddSubtree(m_tarNode);
267
268      return additionNode;
269    }
270
271    private ConstantTreeNode CreateConstantTreeNode(string description, double value) {
272      return new ConstantTreeNode(new Constant()) { Value = value };
273    }
274
275    private VariableTreeNode CreateVariableTreeNode(string name, string description) {
276      return new VariableTreeNode(new Variable(name, description)) { VariableName = name, Weight = 1.0 };
277    }
278
279    private void InitComponents(ITransformation transformation) {
280      this.transformation = transformation;
281      column = transformation.Column;
282    }
283  }
284}
Note: See TracBrowser for help on using the repository browser.