[10310] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[10383] | 22 | using System;
|
---|
[10536] | 23 | using System.Collections.Generic;
|
---|
[10310] | 24 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[10772] | 25 | using HeuristicLab.Problems.DataAnalysis.Transformations;
|
---|
[10310] | 26 |
|
---|
| 27 | namespace HeuristicLab.DataPreprocessing {
|
---|
[10383] | 28 | internal class ProblemDataCreator {
|
---|
[10310] | 29 |
|
---|
| 30 | private readonly IPreprocessingContext context;
|
---|
| 31 |
|
---|
[10695] | 32 | private Dataset ExportedDataset {
|
---|
| 33 | get { return exporteDataset ?? (exporteDataset = context.Data.ExportToDataset()); }
|
---|
| 34 | }
|
---|
| 35 | private Dataset exporteDataset;
|
---|
| 36 |
|
---|
| 37 | private IEnumerable<string> InputVariables { get { return context.Data.VariableNames; } }
|
---|
| 38 | private IEnumerable<ITransformation> Transformations { get { return context.Data.Transformations; } }
|
---|
| 39 |
|
---|
[10383] | 40 | public ProblemDataCreator(IPreprocessingContext context) {
|
---|
[10310] | 41 | this.context = context;
|
---|
| 42 | }
|
---|
| 43 |
|
---|
[10383] | 44 | public IDataAnalysisProblemData CreateProblemData() {
|
---|
[10536] | 45 | var oldProblemData = context.Problem.ProblemData;
|
---|
[10310] | 46 |
|
---|
[10536] | 47 | IDataAnalysisProblemData problemData = null;
|
---|
[10310] | 48 |
|
---|
[10536] | 49 | if (oldProblemData is RegressionProblemData) {
|
---|
[10695] | 50 | problemData = CreateRegressionData((RegressionProblemData)oldProblemData);
|
---|
[10536] | 51 | } else if (oldProblemData is ClassificationProblemData) {
|
---|
[10695] | 52 | problemData = CreateClassificationData((ClassificationProblemData)oldProblemData);
|
---|
[10536] | 53 | } else if (oldProblemData is ClusteringProblemData) {
|
---|
[10695] | 54 | problemData = CreateClusteringData((ClusteringProblemData)oldProblemData);
|
---|
[10536] | 55 | } else {
|
---|
| 56 | throw new NotImplementedException("The type of the DataAnalysisProblemData is not supported.");
|
---|
[10383] | 57 | }
|
---|
| 58 |
|
---|
[10536] | 59 | SetTrainingAndTestPartition(problemData);
|
---|
| 60 |
|
---|
[10383] | 61 | return problemData;
|
---|
| 62 | }
|
---|
| 63 |
|
---|
[10695] | 64 | private IDataAnalysisProblemData CreateRegressionData(RegressionProblemData oldProblemData) {
|
---|
[10536] | 65 | var targetVariable = oldProblemData.TargetVariable;
|
---|
| 66 | // target variable must be double and must exist in the new dataset
|
---|
[10695] | 67 | return new RegressionProblemData(ExportedDataset, InputVariables, targetVariable, Transformations);
|
---|
[10536] | 68 | }
|
---|
[10310] | 69 |
|
---|
[10695] | 70 | private IDataAnalysisProblemData CreateClassificationData(ClassificationProblemData oldProblemData) {
|
---|
[10536] | 71 | var targetVariable = oldProblemData.TargetVariable;
|
---|
| 72 | // target variable must be double and must exist in the new dataset
|
---|
[10695] | 73 | return new ClassificationProblemData(ExportedDataset, InputVariables, targetVariable, Transformations);
|
---|
[10536] | 74 | }
|
---|
[10383] | 75 |
|
---|
[10695] | 76 | private IDataAnalysisProblemData CreateClusteringData(ClusteringProblemData oldProblemData) {
|
---|
| 77 | return new ClusteringProblemData(ExportedDataset, InputVariables, Transformations);
|
---|
[10383] | 78 | }
|
---|
| 79 |
|
---|
| 80 | private void SetTrainingAndTestPartition(IDataAnalysisProblemData problemData) {
|
---|
| 81 | var ppData = context.Data;
|
---|
| 82 |
|
---|
| 83 | problemData.TrainingPartition.Start = ppData.TrainingPartition.Start;
|
---|
| 84 | problemData.TrainingPartition.End = ppData.TrainingPartition.End;
|
---|
| 85 | problemData.TestPartition.Start = ppData.TestPartition.Start;
|
---|
| 86 | problemData.TestPartition.End = ppData.TestPartition.End;
|
---|
| 87 | }
|
---|
[10310] | 88 | }
|
---|
| 89 | }
|
---|