Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataPreprocessing/HeuristicLab.DataPreprocessing/3.3/ProblemDataCreator.cs @ 10699

Last change on this file since 10699 was 10695, checked in by pfleck, 11 years ago
  • Added Transformations to PreprocessingData
  • Added Transformations to DataAnalysisProblemData Parameters
  • Removed SymbolicExpressionTree as inverse transformation.
File size: 3.7 KB
RevLine 
[10310]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[10383]22using System;
[10536]23using System.Collections.Generic;
[10310]24using HeuristicLab.Problems.DataAnalysis;
25
26namespace HeuristicLab.DataPreprocessing {
[10383]27  internal class ProblemDataCreator {
[10310]28
29    private readonly IPreprocessingContext context;
30
[10695]31    private Dataset ExportedDataset {
32      get { return exporteDataset ?? (exporteDataset = context.Data.ExportToDataset()); }
33    }
34    private Dataset exporteDataset;
35
36    private IEnumerable<string> InputVariables { get { return context.Data.VariableNames; } }
37    private IEnumerable<ITransformation> Transformations { get { return context.Data.Transformations; } }
38
39
[10383]40    public ProblemDataCreator(IPreprocessingContext context) {
[10310]41      this.context = context;
42    }
43
[10383]44    public IDataAnalysisProblemData CreateProblemData() {
[10536]45      var oldProblemData = context.Problem.ProblemData;
[10310]46
[10536]47      IDataAnalysisProblemData problemData = null;
[10310]48
[10536]49      if (oldProblemData is RegressionProblemData) {
[10695]50        problemData = CreateRegressionData((RegressionProblemData)oldProblemData);
[10536]51      } else if (oldProblemData is ClassificationProblemData) {
[10695]52        problemData = CreateClassificationData((ClassificationProblemData)oldProblemData);
[10536]53      } else if (oldProblemData is ClusteringProblemData) {
[10695]54        problemData = CreateClusteringData((ClusteringProblemData)oldProblemData);
[10536]55      } else {
56        throw new NotImplementedException("The type of the DataAnalysisProblemData is not supported.");
[10383]57      }
58
[10536]59      SetTrainingAndTestPartition(problemData);
60
[10383]61      return problemData;
62    }
63
[10695]64    private IDataAnalysisProblemData CreateRegressionData(RegressionProblemData oldProblemData) {
[10536]65      var targetVariable = oldProblemData.TargetVariable;
66      // target variable must be double and must exist in the new dataset
[10695]67      return new RegressionProblemData(ExportedDataset, InputVariables, targetVariable, Transformations);
[10536]68    }
[10310]69
[10695]70    private IDataAnalysisProblemData CreateClassificationData(ClassificationProblemData oldProblemData) {
[10536]71      var targetVariable = oldProblemData.TargetVariable;
72      // target variable must be double and must exist in the new dataset
[10695]73      return new ClassificationProblemData(ExportedDataset, InputVariables, targetVariable, Transformations);
[10536]74    }
[10383]75
[10695]76    private IDataAnalysisProblemData CreateClusteringData(ClusteringProblemData oldProblemData) {
77      return new ClusteringProblemData(ExportedDataset, InputVariables, Transformations);
[10383]78    }
79
80    private void SetTrainingAndTestPartition(IDataAnalysisProblemData problemData) {
81      var ppData = context.Data;
82
83      problemData.TrainingPartition.Start = ppData.TrainingPartition.Start;
84      problemData.TrainingPartition.End = ppData.TrainingPartition.End;
85      problemData.TestPartition.Start = ppData.TestPartition.Start;
86      problemData.TestPartition.End = ppData.TestPartition.End;
87    }
[10310]88  }
89}
Note: See TracBrowser for help on using the repository browser.