Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataPreprocessing/HeuristicLab.DataPreprocessing/3.3/Implementations/PreprocessingData.cs @ 10785

Last change on this file since 10785 was 10783, checked in by mleitner, 11 years ago

Add FilteredPreprocessing data for applying and caching filter status

File size: 6.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections;
24using System.Collections.Generic;
25using System.Linq;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Problems.DataAnalysis;
30using HeuristicLab.Problems.DataAnalysis.Transformations;
31
32namespace HeuristicLab.DataPreprocessing {
33
34  [Item("PreprocessingData", "Represents data used for preprocessing.")]
35  public class PreprocessingData : NamedItem, IPreprocessingData {
36
37    protected IList<IList> variableValues;
38
39    protected IList<string> variableNames;
40
41    protected double trainingToTestRatio;
42
43    protected IList<ITransformation> transformations;
44
45    protected PreprocessingData(PreprocessingData original, Cloner cloner)
46      : base(original, cloner) {
47      variableValues = CopyVariableValues(original.variableValues);
48      variableNames = new List<string>(original.variableNames);
49      trainingToTestRatio = original.trainingToTestRatio;
50    }
51
52    public PreprocessingData(IDataAnalysisProblemData problemData)
53      : base() {
54      Name = "-";
55
56      variableNames = new List<string>(problemData.Dataset.VariableNames);
57      // create dictionary from variable name to index
58
59      int columnIndex = 0;
60      variableValues = new List<IList>();
61      foreach (var variableName in problemData.Dataset.VariableNames) {
62        if (problemData.Dataset.IsType<double>(variableName)) {
63          variableValues.Insert(columnIndex, problemData.Dataset.GetDoubleValues(variableName).ToList());
64        } else if (problemData.Dataset.IsType<string>(variableName)) {
65          variableValues.Insert(columnIndex, CreateColumn<string>(problemData.Dataset, columnIndex, x => x));
66        } else if (problemData.Dataset.IsType<DateTime>(variableName)) {
67          variableValues.Insert(columnIndex, CreateColumn<DateTime>(problemData.Dataset, columnIndex, x => DateTime.Parse(x)));
68        } else {
69          throw new ArgumentException("The datatype of column " + variableName + " must be of type List<double>, List<string> or List<DateTime>");
70        }
71        ++columnIndex;
72      }
73
74      trainingToTestRatio = (double)problemData.TrainingPartition.Size / Math.Max(problemData.Dataset.Rows, double.Epsilon);
75    }
76
77    private static IList CreateColumn<T>(Dataset ds, int column, Func<string, T> selector) {
78      var list = new List<T>(ds.Rows);
79      for (int row = 0; row < ds.Rows; ++row) {
80        list.Add(selector(ds.GetValue(row, column)));
81      }
82      return list;
83    }
84
85    protected IList<IList> CopyVariableValues(IList<IList> original) {
86      var copy = new List<IList>(original);
87      for (int i = 0; i < original.Count; ++i) {
88        copy[i] = (IList)Activator.CreateInstance(original[i].GetType(), original[i]);
89      }
90      return copy;
91    }
92
93    #region NamedItem abstract Member Implementations
94
95    public override IDeepCloneable Clone(Cloner cloner) {
96      return new PreprocessingData(this, cloner);
97    }
98
99    #endregion
100
101    #region IPreprocessingData Members
102
103    public T GetCell<T>(int columnIndex, int rowIndex) {
104      return (T)variableValues[columnIndex][rowIndex];
105    }
106
107
108    public virtual void SetCell<T>(int columnIndex, int rowIndex, T value) {
109      variableValues[columnIndex][rowIndex] = value;
110    }
111
112
113    public string GetCellAsString(int columnIndex, int rowIndex) {
114      return variableValues[columnIndex][rowIndex].ToString();
115    }
116
117
118    [Obsolete("use the index based variant, is faster")]
119    public IList<T> GetValues<T>(string variableName) {
120      return GetValues<T>(GetColumnIndex(variableName));
121    }
122
123    public IList<T> GetValues<T>(int columnIndex) {
124      return (IList<T>)variableValues[columnIndex];
125    }
126
127    public virtual void SetValues<T>(int columnIndex, IList<T> values) {
128      if (IsType<T>(columnIndex)) {
129        variableValues[columnIndex] = (IList)values;
130      } else {
131        throw new ArgumentException("The datatype of column " + columnIndex + " must be of type " + variableValues[columnIndex].GetType().Name + " but was " + typeof(T).Name);
132      }
133    }
134
135    public virtual void InsertRow(int rowIndex) {
136      foreach (IList column in variableValues) {
137        Type type = column.GetType().GetGenericArguments()[0];
138        column.Insert(rowIndex, type.IsValueType ? Activator.CreateInstance(type) : null);
139      }
140    }
141
142    public virtual void DeleteRow(int rowIndex) {
143      foreach (IList column in variableValues) {
144        column.RemoveAt(rowIndex);
145      }
146    }
147
148    public virtual void InsertColumn<T>(string variableName, int columnIndex) {
149      variableValues.Insert(columnIndex, new List<T>(Rows));
150      variableNames.Insert(columnIndex, variableName);
151    }
152
153    public virtual void DeleteColumn(int columnIndex) {
154      variableValues.RemoveAt(columnIndex);
155      variableNames.RemoveAt(columnIndex);
156    }
157
158    public IntRange TrainingPartition {
159      get { return new IntRange(0, (int)(Rows * trainingToTestRatio)); }
160    }
161
162    public IntRange TestPartition {
163      get { return new IntRange((int)(Rows * trainingToTestRatio), Rows); }
164    }
165
166    public IList<ITransformation> Transformations {
167      get { return transformations; }
168    }
169
170    public string GetVariableName(int columnIndex) {
171      return variableNames[columnIndex];
172    }
173
174    public IEnumerable<string> VariableNames {
175      get { return variableNames; }
176    }
177
178    public int GetColumnIndex(string variableName) {
179      return variableNames.IndexOf(variableName);
180    }
181
182    public bool IsType<T>(int columnIndex) {
183      return variableValues[columnIndex] is List<T>;
184    }
185
186    public int Columns {
187      get { return variableNames.Count; }
188    }
189
190    public int Rows {
191      get { return variableValues.Count > 0 ? variableValues[0].Count : 0; }
192    }
193
194    public Dataset ExportToDataset() {
195      IList<IList> values = new List<IList>();
196
197      for (int i = 0; i < Columns; ++i) {
198        values.Add(variableValues[i]);
199      }
200
201      var dataset = new Dataset(variableNames, values);
202      return dataset;
203    }
204
205    #endregion
206  }
207}
Note: See TracBrowser for help on using the repository browser.