1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.IO;
|
---|
23 | using System;
|
---|
24 | using HeuristicLab.Random;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using System.Collections.Generic;
|
---|
27 | using System.Diagnostics;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
30 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
31 | using System.Linq;
|
---|
32 | using System.Globalization;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.Tests {
|
---|
36 |
|
---|
37 | [TestClass()]
|
---|
38 | public class StatisticCalculatorsTest {
|
---|
39 | private double[,] testData = new double[,] {
|
---|
40 | {5,1,1,1,2,1,3,1,1,2},
|
---|
41 | {5,4,4,5,7,10,3,2,1,2},
|
---|
42 | {3,1,1,1,2,2,3,1,1,2},
|
---|
43 | {6,8,8,1,3,4,3,7,1,2},
|
---|
44 | {4,1,1,3,2,1,3,1,1,2},
|
---|
45 | {8,10,10,8,7,10,9,7,1,4},
|
---|
46 | {1,1,1,1,2,10,3,1,1,2},
|
---|
47 | {2,1,2,1,2,1,3,1,1,2},
|
---|
48 | {2,1,1,1,2,1,1,1,5,2},
|
---|
49 | {4,2,1,1,2,1,2,1,1,2},
|
---|
50 | {1,1,1,1,1,1,3,1,1,2},
|
---|
51 | {2,1,1,1,2,1,2,1,1,2},
|
---|
52 | {5,3,3,3,2,3,4,4,1,4},
|
---|
53 | {8,7,5,10,7,9,5,5,4,4},
|
---|
54 | {7,4,6,4,6,1,4,3,1,4},
|
---|
55 | {4,1,1,1,2,1,2,1,1,2},
|
---|
56 | {4,1,1,1,2,1,3,1,1,2},
|
---|
57 | {10,7,7,6,4,10,4,1,2,4},
|
---|
58 | {6,1,1,1,2,1,3,1,1,2},
|
---|
59 | {7,3,2,10,5,10,5,4,4,4},
|
---|
60 | {10,5,5,3,6,7,7,10,1,4}
|
---|
61 | };
|
---|
62 |
|
---|
63 | [TestMethod()]
|
---|
64 | public void CalculateMeanAndVarianceTest() {
|
---|
65 | System.Random random = new System.Random(31415);
|
---|
66 |
|
---|
67 | int n = testData.GetLength(0);
|
---|
68 | int cols = testData.GetLength(1);
|
---|
69 | {
|
---|
70 | for (int col = 0; col < cols; col++) {
|
---|
71 | double scale = random.NextDouble() * 1E7;
|
---|
72 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
73 | select testData[rows, col] * scale;
|
---|
74 | double[] xs = x.ToArray();
|
---|
75 | double mean_alglib, variance_alglib;
|
---|
76 | mean_alglib = variance_alglib = 0.0;
|
---|
77 | double tmp = 0;
|
---|
78 |
|
---|
79 | alglib.descriptivestatistics.calculatemoments(ref xs, n, ref mean_alglib, ref variance_alglib, ref tmp, ref tmp);
|
---|
80 |
|
---|
81 | var calculator = new OnlineMeanAndVarianceCalculator();
|
---|
82 | for (int i = 0; i < n; i++) {
|
---|
83 | calculator.Add(xs[i]);
|
---|
84 | }
|
---|
85 | double mean = calculator.Mean;
|
---|
86 | double variance = calculator.Variance;
|
---|
87 |
|
---|
88 | Assert.AreEqual(mean_alglib, mean, 1E-6 * scale);
|
---|
89 | Assert.AreEqual(variance_alglib, variance, 1E-6 * scale);
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | [TestMethod()]
|
---|
95 | public void CalculatePearsonsRSquaredTest() {
|
---|
96 | System.Random random = new System.Random(31415);
|
---|
97 | int n = testData.GetLength(0);
|
---|
98 | int cols = testData.GetLength(1);
|
---|
99 | for (int c1 = 0; c1 < cols; c1++) {
|
---|
100 | for (int c2 = c1 + 1; c2 < cols; c2++) {
|
---|
101 | {
|
---|
102 | double c1Scale = random.NextDouble() * 1E7;
|
---|
103 | double c2Scale = random.NextDouble() * 1E7;
|
---|
104 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
105 | select testData[rows, c1] * c1Scale;
|
---|
106 | IEnumerable<double> y = from rows in Enumerable.Range(0, n)
|
---|
107 | select testData[rows, c2] * c2Scale;
|
---|
108 | double[] xs = x.ToArray();
|
---|
109 | double[] ys = y.ToArray();
|
---|
110 | double r2_alglib = alglib.correlation.pearsoncorrelation(ref xs, ref ys, n);
|
---|
111 | r2_alglib *= r2_alglib;
|
---|
112 |
|
---|
113 | var r2Calculator = new OnlinePearsonsRSquaredEvaluator();
|
---|
114 | for (int i = 0; i < n; i++) {
|
---|
115 | r2Calculator.Add(xs[i], ys[i]);
|
---|
116 | }
|
---|
117 | double r2 = r2Calculator.RSquared;
|
---|
118 |
|
---|
119 | Assert.AreEqual(r2_alglib, r2, 1E-6 * Math.Max(c1Scale, c2Scale));
|
---|
120 | }
|
---|
121 | }
|
---|
122 | }
|
---|
123 | }
|
---|
124 | }
|
---|
125 | }
|
---|