1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using alglib;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Operators {
|
---|
33 | [Item("WeightedParentsQualityVarianceComparator", "Compares the quality and variance of the quality against that of its parents (assumes the parents are subscopes to the child scope). This operator works with any number of subscopes > 0.")]
|
---|
34 | [StorableClass]
|
---|
35 | public class WeightedParentsQualityVarianceComparator : SingleSuccessorOperator, ISubScopesQualityComparator {
|
---|
36 | public IValueLookupParameter<BoolValue> MaximizationParameter {
|
---|
37 | get { return (IValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
38 | }
|
---|
39 | public ILookupParameter<BoolValue> ResultParameter {
|
---|
40 | get { return (ILookupParameter<BoolValue>)Parameters["Result"]; }
|
---|
41 | }
|
---|
42 | public IValueLookupParameter<DoubleValue> ConfidenceIntervalParameter {
|
---|
43 | get { return (IValueLookupParameter<DoubleValue>)Parameters["ConfidenceInterval"]; }
|
---|
44 | }
|
---|
45 | public ILookupParameter<DoubleValue> LeftSideParameter {
|
---|
46 | get { return (ILookupParameter<DoubleValue>)Parameters["LeftSide"]; }
|
---|
47 | }
|
---|
48 | public ILookupParameter<DoubleValue> LeftSideVarianceParameter {
|
---|
49 | get { return (ILookupParameter<DoubleValue>)Parameters["LeftSideVariance"]; }
|
---|
50 | }
|
---|
51 | public ILookupParameter<IntValue> LeftSideSamplesParameter {
|
---|
52 | get { return (ILookupParameter<IntValue>)Parameters["LeftSideSamples"]; }
|
---|
53 | }
|
---|
54 | public ILookupParameter<ItemArray<DoubleValue>> RightSideParameter {
|
---|
55 | get { return (ILookupParameter<ItemArray<DoubleValue>>)Parameters["RightSide"]; }
|
---|
56 | }
|
---|
57 | public ILookupParameter<ItemArray<DoubleValue>> RightSideVariancesParameters {
|
---|
58 | get { return (ILookupParameter<ItemArray<DoubleValue>>)Parameters["RightSideVariances"]; }
|
---|
59 | }
|
---|
60 | public ILookupParameter<ItemArray<IntValue>> RightSideSamplesParameters {
|
---|
61 | get { return (ILookupParameter<ItemArray<IntValue>>)Parameters["RightSideSamples"]; }
|
---|
62 | }
|
---|
63 |
|
---|
64 | public WeightedParentsQualityVarianceComparator()
|
---|
65 | : base() {
|
---|
66 | Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, false otherwise"));
|
---|
67 | Parameters.Add(new LookupParameter<BoolValue>("Result", "The result of the comparison: True means Quality is better, False means it is worse than parents."));
|
---|
68 | Parameters.Add(new ValueLookupParameter<DoubleValue>("ConfidenceInterval", "The confidence interval used for the test.", new DoubleValue(0.05)));
|
---|
69 |
|
---|
70 | Parameters.Add(new LookupParameter<DoubleValue>("LeftSide", "The quality of the child."));
|
---|
71 | Parameters.Add(new LookupParameter<DoubleValue>("LeftSideVariance", "The variances of the quality of the new child."));
|
---|
72 | Parameters.Add(new LookupParameter<IntValue>("LeftSideSamples", "The number of samples used to calculate the quality of the new child."));
|
---|
73 |
|
---|
74 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("RightSide", "The qualities of the parents."));
|
---|
75 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("RightSideVariances", "The variances of the parents."));
|
---|
76 | Parameters.Add(new ScopeTreeLookupParameter<IntValue>("RightSideSamples", "The number of samples used to calculate the quality of the parent."));
|
---|
77 | }
|
---|
78 |
|
---|
79 | public override IOperation Apply() {
|
---|
80 | double leftQuality = LeftSideParameter.ActualValue.Value;
|
---|
81 | double leftVariance = LeftSideVarianceParameter.ActualValue.Value;
|
---|
82 | int leftSamples = LeftSideSamplesParameter.ActualValue.Value;
|
---|
83 |
|
---|
84 | ItemArray<DoubleValue> rightQualities = RightSideParameter.ActualValue;
|
---|
85 | ItemArray<DoubleValue> rightVariances = RightSideVariancesParameters.ActualValue;
|
---|
86 | ItemArray<IntValue> rightSamples = RightSideSamplesParameters.ActualValue;
|
---|
87 |
|
---|
88 | if (rightQualities.Length < 1) throw new InvalidOperationException(Name + ": No subscopes found.");
|
---|
89 | bool maximization = MaximizationParameter.ActualValue.Value;
|
---|
90 |
|
---|
91 | int bestParentIndex;
|
---|
92 | double bestParentQuality;
|
---|
93 | double bestParentVariance;
|
---|
94 | int bestParentSamples;
|
---|
95 |
|
---|
96 | if (maximization)
|
---|
97 | bestParentQuality = rightQualities.Max(x => x.Value);
|
---|
98 | else
|
---|
99 | bestParentQuality = rightQualities.Min(x => x.Value);
|
---|
100 | bestParentIndex = rightQualities.FindIndex(x => x.Value == bestParentQuality);
|
---|
101 | bestParentVariance = rightVariances[bestParentIndex].Value;
|
---|
102 | bestParentSamples = rightSamples[bestParentIndex].Value;
|
---|
103 |
|
---|
104 | double xmean = leftQuality;
|
---|
105 | double xvar = leftVariance;
|
---|
106 | int n = leftSamples;
|
---|
107 | double ymean = bestParentQuality;
|
---|
108 | double yvar = bestParentVariance;
|
---|
109 | double m = bestParentSamples;
|
---|
110 |
|
---|
111 |
|
---|
112 | //following code taken from ALGLIB studentttest line 351
|
---|
113 | // Two-sample unpooled test
|
---|
114 | double p = 0;
|
---|
115 | double stat = (xmean - ymean) / Math.Sqrt(xvar / n + yvar / m);
|
---|
116 | double c = xvar / n / (xvar / n + yvar / m);
|
---|
117 | double df = (n - 1) * (m - 1) / ((m - 1) * AP.Math.Sqr(c) + (n - 1) * (1 - AP.Math.Sqr(c)));
|
---|
118 | if ((double)(stat) > (double)(0))
|
---|
119 | p = 1 - 0.5 * ibetaf.incompletebeta(df / 2, 0.5, df / (df + AP.Math.Sqr(stat)));
|
---|
120 | else
|
---|
121 | p = 0.5 * ibetaf.incompletebeta(df / 2, 0.5, df / (df + AP.Math.Sqr(stat)));
|
---|
122 | double bothtails = 2 * Math.Min(p, 1 - p);
|
---|
123 | double lefttail = p;
|
---|
124 | double righttail = 1 - p;
|
---|
125 |
|
---|
126 | bool result = false;
|
---|
127 | // reject only if the child is significantly worse
|
---|
128 | if (maximization) {
|
---|
129 | if (bothtails > ConfidenceIntervalParameter.ActualValue.Value) result = true;
|
---|
130 | else if (leftQuality > bestParentQuality) result = true;
|
---|
131 | else result = false;
|
---|
132 | } else {
|
---|
133 | if (bothtails > ConfidenceIntervalParameter.ActualValue.Value) result = true;
|
---|
134 | else if (leftQuality < bestParentQuality) result = true;
|
---|
135 | else result = false;
|
---|
136 | }
|
---|
137 |
|
---|
138 | BoolValue resultValue = ResultParameter.ActualValue;
|
---|
139 | if (resultValue == null) {
|
---|
140 | ResultParameter.ActualValue = new BoolValue(result);
|
---|
141 | } else {
|
---|
142 | resultValue.Value = result;
|
---|
143 | }
|
---|
144 | return base.Apply();
|
---|
145 | }
|
---|
146 | }
|
---|
147 | }
|
---|