1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Operators;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
31 | using System.Collections.Generic;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
33 | using HeuristicLab.Analysis;
|
---|
34 | using HeuristicLab.Common;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Problems.DataAnalysis.Operators {
|
---|
37 | [Item("Covariant Parsimony Pressure", "Covariant Parsimony Pressure.")]
|
---|
38 | [StorableClass]
|
---|
39 | public class CovariantParsimonyPressure : SingleSuccessorOperator {
|
---|
40 | public IScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
41 | get { return (IScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters["SymbolicExpressionTree"]; }
|
---|
42 | }
|
---|
43 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
44 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
45 | }
|
---|
46 | public IScopeTreeLookupParameter<DoubleValue> AdjustedQualityParameter {
|
---|
47 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["AdjustedQuality"]; }
|
---|
48 | }
|
---|
49 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
50 | get { return (ILookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
51 | }
|
---|
52 | public IValueLookupParameter<DoubleValue> KParameter {
|
---|
53 | get { return (IValueLookupParameter<DoubleValue>)Parameters["K"]; }
|
---|
54 | }
|
---|
55 | public ILookupParameter<DoubleValue> CParameter {
|
---|
56 | get { return (ILookupParameter<DoubleValue>)Parameters["C"]; }
|
---|
57 | }
|
---|
58 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
59 | get { return (ILookupParameter<IntValue>)Parameters["Generations"]; }
|
---|
60 | }
|
---|
61 | public IValueLookupParameter<IntValue> FirstGenerationParameter {
|
---|
62 | get { return (IValueLookupParameter<IntValue>)Parameters["FirstGenerationParameter"]; }
|
---|
63 | }
|
---|
64 | public IValueLookupParameter<BoolValue> ApplyParsimonyPressureParameter {
|
---|
65 | get { return (IValueLookupParameter<BoolValue>)Parameters["ApplyParsimonyPressure"]; }
|
---|
66 | }
|
---|
67 | public ILookupParameter<DoubleValue> LengthCorrelationParameter {
|
---|
68 | get { return (ILookupParameter<DoubleValue>)Parameters["Correlation(Length, AdjustedFitness)"]; }
|
---|
69 | }
|
---|
70 | public ILookupParameter<DoubleValue> FitnessCorrelationParameter {
|
---|
71 | get { return (ILookupParameter<DoubleValue>)Parameters["Correlation(Fitness, AdjustedFitness)"]; }
|
---|
72 | }
|
---|
73 | public IValueLookupParameter<PercentValue> ComplexityAdaptionParameter {
|
---|
74 | get { return (IValueLookupParameter<PercentValue>)Parameters["ComplexityAdaption"]; }
|
---|
75 | }
|
---|
76 | public IValueLookupParameter<BoolValue> InvertComplexityAdaptionParameter {
|
---|
77 | get { return (IValueLookupParameter<BoolValue>)Parameters["InvertComplexityAdaption"]; }
|
---|
78 | }
|
---|
79 | public IValueLookupParameter<DoubleValue> MinAverageSizeParameter {
|
---|
80 | get { return (IValueLookupParameter<DoubleValue>)Parameters["MinAverageSize"]; }
|
---|
81 | }
|
---|
82 |
|
---|
83 | protected CovariantParsimonyPressure(bool deserializing) : base(deserializing) { }
|
---|
84 | protected CovariantParsimonyPressure(CovariantParsimonyPressure original, Cloner clone) : base(original, clone) { }
|
---|
85 | public CovariantParsimonyPressure()
|
---|
86 | : base() {
|
---|
87 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>("SymbolicExpressionTree"));
|
---|
88 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality"));
|
---|
89 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("AdjustedQuality"));
|
---|
90 | Parameters.Add(new LookupParameter<BoolValue>("Maximization"));
|
---|
91 | Parameters.Add(new ValueLookupParameter<DoubleValue>("K", new DoubleValue(1.0)));
|
---|
92 | Parameters.Add(new LookupParameter<IntValue>("Generations"));
|
---|
93 | Parameters.Add(new ValueLookupParameter<IntValue>("FirstGenerationParameter", new IntValue(1)));
|
---|
94 | Parameters.Add(new ValueLookupParameter<BoolValue>("ApplyParsimonyPressure"));
|
---|
95 | Parameters.Add(new ValueLookupParameter<PercentValue>("ComplexityAdaption", new PercentValue(-0.01)));
|
---|
96 | Parameters.Add(new LookupParameter<DoubleValue>("Correlation(Length, AdjustedFitness)"));
|
---|
97 | Parameters.Add(new LookupParameter<DoubleValue>("Correlation(Fitness, AdjustedFitness)"));
|
---|
98 | Parameters.Add(new ValueLookupParameter<DoubleValue>("MinAverageSize", new DoubleValue(15)));
|
---|
99 | Parameters.Add(new LookupParameter<DoubleValue>("C"));
|
---|
100 | Parameters.Add(new ValueLookupParameter<BoolValue>("InvertComplexityAdaption"));
|
---|
101 | }
|
---|
102 |
|
---|
103 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
104 | return new CovariantParsimonyPressure(this, cloner);
|
---|
105 | }
|
---|
106 |
|
---|
107 |
|
---|
108 | [StorableHook(Persistence.Default.CompositeSerializers.Storable.HookType.AfterDeserialization)]
|
---|
109 | private void AfterDeserialization() {
|
---|
110 | if (!Parameters.ContainsKey("Maximization"))
|
---|
111 | Parameters.Add(new LookupParameter<BoolValue>("Maximization"));
|
---|
112 | if (!Parameters.ContainsKey("K"))
|
---|
113 | Parameters.Add(new ValueLookupParameter<DoubleValue>("K", new DoubleValue(1.0)));
|
---|
114 | if (!Parameters.ContainsKey("AdjustedQuality")) {
|
---|
115 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("AdjustedQuality"));
|
---|
116 | }
|
---|
117 | if (!Parameters.ContainsKey("Generations")) {
|
---|
118 | Parameters.Add(new LookupParameter<IntValue>("Generations"));
|
---|
119 | }
|
---|
120 | if (!Parameters.ContainsKey("FirstGenerationParameter")) {
|
---|
121 | Parameters.Add(new ValueLookupParameter<IntValue>("FirstGenerationParameter", new IntValue(1)));
|
---|
122 | }
|
---|
123 | if (!Parameters.ContainsKey("ApplyParsimonyPressure")) {
|
---|
124 | Parameters.Add(new ValueLookupParameter<BoolValue>("ApplyParsimonyPressure"));
|
---|
125 | }
|
---|
126 | if (!Parameters.ContainsKey("ComplexityAdaption")) {
|
---|
127 | Parameters.Add(new ValueLookupParameter<PercentValue>("ComplexityAdaption", new PercentValue(-0.01)));
|
---|
128 | }
|
---|
129 | if (!Parameters.ContainsKey("MinAverageSize")) {
|
---|
130 | Parameters.Add(new ValueLookupParameter<DoubleValue>("MinAverageSize", new DoubleValue(15)));
|
---|
131 | }
|
---|
132 | if (!Parameters.ContainsKey("C")) {
|
---|
133 | Parameters.Add(new LookupParameter<DoubleValue>("C"));
|
---|
134 | }
|
---|
135 | if (!Parameters.ContainsKey("InvertComplexityAdaption")) {
|
---|
136 | Parameters.Add(new ValueLookupParameter<BoolValue>("InvertComplexityAdaption"));
|
---|
137 | }
|
---|
138 | }
|
---|
139 |
|
---|
140 | public override IOperation Apply() {
|
---|
141 | ItemArray<SymbolicExpressionTree> trees = SymbolicExpressionTreeParameter.ActualValue;
|
---|
142 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
143 | // always apply Parsimony pressure if overfitting has been detected
|
---|
144 | // otherwise appliy PP only when we are currently overfitting
|
---|
145 | if (GenerationsParameter.ActualValue != null && GenerationsParameter.ActualValue.Value >= FirstGenerationParameter.ActualValue.Value &&
|
---|
146 | ApplyParsimonyPressureParameter.ActualValue.Value == true) {
|
---|
147 | var lengths = from tree in trees
|
---|
148 | select tree.Size;
|
---|
149 | double k = KParameter.ActualValue.Value;
|
---|
150 |
|
---|
151 | // calculate cov(f, l) and cov(l, l^k)
|
---|
152 | OnlineCovarianceEvaluator lengthFitnessCovEvaluator = new OnlineCovarianceEvaluator();
|
---|
153 | OnlineCovarianceEvaluator lengthAdjLengthCovEvaluator = new OnlineCovarianceEvaluator();
|
---|
154 | OnlineMeanAndVarianceCalculator lengthMeanCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
155 | OnlineMeanAndVarianceCalculator fitnessMeanCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
156 | OnlineMeanAndVarianceCalculator adjLengthMeanCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
157 | var lengthEnumerator = lengths.GetEnumerator();
|
---|
158 | var qualityEnumerator = qualities.GetEnumerator();
|
---|
159 | while (lengthEnumerator.MoveNext() & qualityEnumerator.MoveNext()) {
|
---|
160 | double fitness = qualityEnumerator.Current.Value;
|
---|
161 | if (!MaximizationParameter.ActualValue.Value) {
|
---|
162 | // use f = 1 / (1 + quality) for minimization problems
|
---|
163 | fitness = 1.0 / (1.0 + fitness);
|
---|
164 | }
|
---|
165 | lengthFitnessCovEvaluator.Add(lengthEnumerator.Current, fitness);
|
---|
166 | lengthAdjLengthCovEvaluator.Add(lengthEnumerator.Current, Math.Pow(lengthEnumerator.Current, k));
|
---|
167 | lengthMeanCalculator.Add(lengthEnumerator.Current);
|
---|
168 | fitnessMeanCalculator.Add(fitness);
|
---|
169 | adjLengthMeanCalculator.Add(Math.Pow(lengthEnumerator.Current, k));
|
---|
170 | }
|
---|
171 |
|
---|
172 | //double sizeAdaption = lengthMeanCalculator.Mean * ComplexityAdaptionParameter.ActualValue.Value;
|
---|
173 | double sizeAdaption = 100.0 * ComplexityAdaptionParameter.ActualValue.Value;
|
---|
174 | if (InvertComplexityAdaptionParameter.ActualValue != null && InvertComplexityAdaptionParameter.ActualValue.Value) {
|
---|
175 | sizeAdaption = -sizeAdaption;
|
---|
176 | }
|
---|
177 | if (lengthMeanCalculator.Mean + sizeAdaption < MinAverageSizeParameter.ActualValue.Value)
|
---|
178 | sizeAdaption = MinAverageSizeParameter.ActualValue.Value - lengthMeanCalculator.Mean;
|
---|
179 |
|
---|
180 | // cov(l, f) - (g(t+1) - mu(t)) avgF
|
---|
181 | // c(t) = --------------------------------------------
|
---|
182 | // cov(l, l^k) - (g(t+1) - mu(t)) E[l^k]
|
---|
183 | double c = lengthFitnessCovEvaluator.Covariance - sizeAdaption * fitnessMeanCalculator.Mean;
|
---|
184 | c /= lengthAdjLengthCovEvaluator.Covariance - sizeAdaption * adjLengthMeanCalculator.Mean;
|
---|
185 |
|
---|
186 | CParameter.ActualValue = new DoubleValue(c);
|
---|
187 |
|
---|
188 | // adjust fitness
|
---|
189 | bool maximization = MaximizationParameter.ActualValue.Value;
|
---|
190 |
|
---|
191 | lengthEnumerator = lengths.GetEnumerator();
|
---|
192 | qualityEnumerator = qualities.GetEnumerator();
|
---|
193 | int i = 0;
|
---|
194 | ItemArray<DoubleValue> adjQualities = new ItemArray<DoubleValue>(qualities.Length);
|
---|
195 |
|
---|
196 | while (lengthEnumerator.MoveNext() & qualityEnumerator.MoveNext()) {
|
---|
197 | adjQualities[i++] = new DoubleValue(qualityEnumerator.Current.Value - c * Math.Pow(lengthEnumerator.Current, k));
|
---|
198 | }
|
---|
199 | AdjustedQualityParameter.ActualValue = adjQualities;
|
---|
200 | double[] lengthArr = lengths.Select(x => (double)x).ToArray<double>();
|
---|
201 |
|
---|
202 | double[] adjFitess = (from f in AdjustedQualityParameter.ActualValue
|
---|
203 | select f.Value).ToArray<double>();
|
---|
204 | double[] fitnessArr = (from f in QualityParameter.ActualValue
|
---|
205 | let normFit = maximization ? f.Value : 1.0 / (1.0 + f.Value)
|
---|
206 | select normFit).ToArray<double>();
|
---|
207 |
|
---|
208 | LengthCorrelationParameter.ActualValue = new DoubleValue(alglib.spearmancorr2(lengthArr, adjFitess, lengthArr.Length));
|
---|
209 | FitnessCorrelationParameter.ActualValue = new DoubleValue(alglib.spearmancorr2(fitnessArr, adjFitess, lengthArr.Length));
|
---|
210 |
|
---|
211 | } else {
|
---|
212 | CParameter.ActualValue = new DoubleValue(0.0);
|
---|
213 | // adjusted fitness is equal to fitness
|
---|
214 | AdjustedQualityParameter.ActualValue = (ItemArray<DoubleValue>)QualityParameter.ActualValue.Clone();
|
---|
215 | FitnessCorrelationParameter.ActualValue = new DoubleValue(1.0);
|
---|
216 |
|
---|
217 | double[] lengths = (from tree in trees
|
---|
218 | select (double)tree.Size).ToArray<double>();
|
---|
219 |
|
---|
220 | double[] fitess = (from f in AdjustedQualityParameter.ActualValue
|
---|
221 | select f.Value).ToArray<double>();
|
---|
222 |
|
---|
223 | LengthCorrelationParameter.ActualValue = new DoubleValue(alglib.spearmancorr2(lengths, fitess, lengths.Length));
|
---|
224 | }
|
---|
225 | return base.Apply();
|
---|
226 | }
|
---|
227 | }
|
---|
228 | }
|
---|