Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis/3.3/Evaluators/SimpleVarianceAccountedForEvaluator.cs @ 9760

Last change on this file since 9760 was 5275, checked in by gkronber, 14 years ago

Merged changes from trunk to data analysis exploration branch and added fractional distance metric evaluator. #1142

File size: 3.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Problems.DataAnalysis.Evaluators {
32  /// <summary>
33  /// The Variance Accounted For (VAF) function calculates is computed as
34  /// VAF(y,y') =  1 - var(y-y')/var(y)
35  /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
36  /// </summary>
37  public class SimpleVarianceAccountedForEvaluator : SimpleEvaluator {
38
39    public ILookupParameter<DoubleValue> VarianceAccountedForParameter {
40      get { return (ILookupParameter<DoubleValue>)Parameters["VarianceAccountedFor"]; }
41    }
42
43    [StorableConstructor]
44    protected SimpleVarianceAccountedForEvaluator(bool deserializing) : base(deserializing) { }
45    protected SimpleVarianceAccountedForEvaluator(SimpleVarianceAccountedForEvaluator original, Cloner cloner)
46      : base(original, cloner) {
47    }
48    public override IDeepCloneable Clone(Cloner cloner) {
49      return new SimpleVarianceAccountedForEvaluator(this, cloner);
50    }
51    public SimpleVarianceAccountedForEvaluator() {
52      Parameters.Add(new LookupParameter<DoubleValue>("VarianceAccountedFor", "The variance of the original values accounted for by the estimated values (VAF(y,y') = 1 - var(y-y') / var(y) )."));
53    }
54
55    protected override void Apply(DoubleMatrix values) {
56      var original = from i in Enumerable.Range(0, values.Rows)
57                     select values[i, ORIGINAL_INDEX];
58      var estimated = from i in Enumerable.Range(0, values.Rows)
59                      select values[i, ESTIMATION_INDEX];
60      VarianceAccountedForParameter.ActualValue = new DoubleValue(Calculate(original, estimated));
61    }
62
63    public static double Calculate(IEnumerable<double> original, IEnumerable<double> estimated) {
64      var originalEnumerator = original.GetEnumerator();
65      var estimatedEnumerator = estimated.GetEnumerator();
66      var errors = new List<double>();
67      while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
68        double e = estimatedEnumerator.Current;
69        double o = originalEnumerator.Current;
70        if (!double.IsNaN(e) && !double.IsInfinity(e) &&
71          !double.IsNaN(o) && !double.IsInfinity(o)) {
72          errors.Add(o - e);
73        }
74      }
75      if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
76        throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
77      }
78
79      double errorsVariance = errors.Variance();
80      double originalsVariance = original.Variance();
81      if (originalsVariance.IsAlmost(0.0))
82        if (errorsVariance.IsAlmost(0.0)) {
83          return 1.0;
84        } else {
85          return double.MaxValue;
86        } else {
87        return 1.0 - errorsVariance / originalsVariance;
88      }
89    }
90  }
91}
Note: See TracBrowser for help on using the repository browser.