1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Evaluators {
|
---|
32 | /// <summary>
|
---|
33 | /// The Variance Accounted For (VAF) function calculates is computed as
|
---|
34 | /// VAF(y,y') = 1 - var(y-y')/var(y)
|
---|
35 | /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
|
---|
36 | /// </summary>
|
---|
37 | public class SimpleVarianceAccountedForEvaluator : SimpleEvaluator {
|
---|
38 |
|
---|
39 | public ILookupParameter<DoubleValue> VarianceAccountedForParameter {
|
---|
40 | get { return (ILookupParameter<DoubleValue>)Parameters["VarianceAccountedFor"]; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | [StorableConstructor]
|
---|
44 | protected SimpleVarianceAccountedForEvaluator(bool deserializing) : base(deserializing) { }
|
---|
45 | protected SimpleVarianceAccountedForEvaluator(SimpleVarianceAccountedForEvaluator original, Cloner cloner)
|
---|
46 | : base(original, cloner) {
|
---|
47 | }
|
---|
48 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
49 | return new SimpleVarianceAccountedForEvaluator(this, cloner);
|
---|
50 | }
|
---|
51 | public SimpleVarianceAccountedForEvaluator() {
|
---|
52 | Parameters.Add(new LookupParameter<DoubleValue>("VarianceAccountedFor", "The variance of the original values accounted for by the estimated values (VAF(y,y') = 1 - var(y-y') / var(y) )."));
|
---|
53 | }
|
---|
54 |
|
---|
55 | protected override void Apply(DoubleMatrix values) {
|
---|
56 | var original = from i in Enumerable.Range(0, values.Rows)
|
---|
57 | select values[i, ORIGINAL_INDEX];
|
---|
58 | var estimated = from i in Enumerable.Range(0, values.Rows)
|
---|
59 | select values[i, ESTIMATION_INDEX];
|
---|
60 | VarianceAccountedForParameter.ActualValue = new DoubleValue(Calculate(original, estimated));
|
---|
61 | }
|
---|
62 |
|
---|
63 | public static double Calculate(IEnumerable<double> original, IEnumerable<double> estimated) {
|
---|
64 | var originalEnumerator = original.GetEnumerator();
|
---|
65 | var estimatedEnumerator = estimated.GetEnumerator();
|
---|
66 | var errors = new List<double>();
|
---|
67 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
68 | double e = estimatedEnumerator.Current;
|
---|
69 | double o = originalEnumerator.Current;
|
---|
70 | if (!double.IsNaN(e) && !double.IsInfinity(e) &&
|
---|
71 | !double.IsNaN(o) && !double.IsInfinity(o)) {
|
---|
72 | errors.Add(o - e);
|
---|
73 | }
|
---|
74 | }
|
---|
75 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
|
---|
76 | throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
|
---|
77 | }
|
---|
78 |
|
---|
79 | double errorsVariance = errors.Variance();
|
---|
80 | double originalsVariance = original.Variance();
|
---|
81 | if (originalsVariance.IsAlmost(0.0))
|
---|
82 | if (errorsVariance.IsAlmost(0.0)) {
|
---|
83 | return 1.0;
|
---|
84 | } else {
|
---|
85 | return double.MaxValue;
|
---|
86 | } else {
|
---|
87 | return 1.0 - errorsVariance / originalsVariance;
|
---|
88 | }
|
---|
89 | }
|
---|
90 | }
|
---|
91 | }
|
---|