1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Problems.DataAnalysis.Evaluators {
|
---|
26 | /// <summary>
|
---|
27 | /// Calculates linear scaling parameters in one pass.
|
---|
28 | /// The formulas to calculate the scaling parameters were taken from Scaled Symblic Regression by Maarten Keijzer.
|
---|
29 | /// http://www.springerlink.com/content/x035121165125175/
|
---|
30 | /// </summary>
|
---|
31 | public class OnlineLinearScalingCalculator {
|
---|
32 | private int n;
|
---|
33 | private OnlineMeanAndVarianceCalculator yVarianceCalculator;
|
---|
34 | private OnlineMeanAndVarianceCalculator tMeanCalculator;
|
---|
35 | private OnlineCovarianceEvaluator ytCovarianceEvaluator;
|
---|
36 |
|
---|
37 | public double Alpha {
|
---|
38 | get {
|
---|
39 | if (n < 2) {
|
---|
40 | return 0.0;
|
---|
41 | } else {
|
---|
42 | return tMeanCalculator.Mean - Beta * yVarianceCalculator.Mean;
|
---|
43 | }
|
---|
44 | }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public double Beta {
|
---|
48 | get {
|
---|
49 | if (n < 2 || yVarianceCalculator.PopulationVariance.IsAlmost(0.0)) {
|
---|
50 | return 1;
|
---|
51 | } else {
|
---|
52 | return ytCovarianceEvaluator.Covariance / yVarianceCalculator.PopulationVariance;
|
---|
53 | }
|
---|
54 | }
|
---|
55 | }
|
---|
56 |
|
---|
57 | public OnlineLinearScalingCalculator() {
|
---|
58 | Reset();
|
---|
59 | }
|
---|
60 |
|
---|
61 | public void Reset() {
|
---|
62 | n = 0;
|
---|
63 | yVarianceCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
64 | tMeanCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
65 | ytCovarianceEvaluator = new OnlineCovarianceEvaluator();
|
---|
66 |
|
---|
67 | }
|
---|
68 |
|
---|
69 | public void Add(double target, double x) {
|
---|
70 | if (double.IsNaN(target) || double.IsInfinity(target) || double.IsNaN(x) || double.IsInfinity(x))
|
---|
71 | throw new ArgumentException("Linear scaling is not defined for series containing NaN or infinity elements.");
|
---|
72 | else {
|
---|
73 | tMeanCalculator.Add(target);
|
---|
74 | yVarianceCalculator.Add(x);
|
---|
75 | ytCovarianceEvaluator.Add(x, target);
|
---|
76 |
|
---|
77 | n++;
|
---|
78 | }
|
---|
79 | }
|
---|
80 | }
|
---|
81 | }
|
---|