1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Windows.Forms;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Views;
|
---|
31 | using HeuristicLab.MainForm.WindowsForms;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Problems.DataAnalysis.Views.Symbolic {
|
---|
37 | public partial class InteractiveSymbolicRegressionSolutionSimplifierView : AsynchronousContentView {
|
---|
38 | private SymbolicExpressionTree simplifiedExpressionTree;
|
---|
39 | private Dictionary<SymbolicExpressionTreeNode, ConstantTreeNode> replacementNodes;
|
---|
40 | private Dictionary<SymbolicExpressionTreeNode, double> nodeImpacts;
|
---|
41 |
|
---|
42 | public InteractiveSymbolicRegressionSolutionSimplifierView() {
|
---|
43 | InitializeComponent();
|
---|
44 | this.replacementNodes = new Dictionary<SymbolicExpressionTreeNode, ConstantTreeNode>();
|
---|
45 | this.nodeImpacts = new Dictionary<SymbolicExpressionTreeNode, double>();
|
---|
46 | this.simplifiedExpressionTree = null;
|
---|
47 | this.Caption = "Interactive Solution Simplifier";
|
---|
48 | }
|
---|
49 |
|
---|
50 | public new SymbolicRegressionSolution Content {
|
---|
51 | get { return (SymbolicRegressionSolution)base.Content; }
|
---|
52 | set { base.Content = value; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | protected override void RegisterContentEvents() {
|
---|
56 | base.RegisterContentEvents();
|
---|
57 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
58 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
59 | }
|
---|
60 | protected override void DeregisterContentEvents() {
|
---|
61 | base.DeregisterContentEvents();
|
---|
62 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
63 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
64 | }
|
---|
65 |
|
---|
66 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
67 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
68 | }
|
---|
69 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
70 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
71 | }
|
---|
72 |
|
---|
73 | protected override void OnContentChanged() {
|
---|
74 | base.OnContentChanged();
|
---|
75 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
76 | this.viewHost.Content = this.Content;
|
---|
77 | }
|
---|
78 |
|
---|
79 | private void CalculateReplacementNodesAndNodeImpacts() {
|
---|
80 | this.replacementNodes.Clear();
|
---|
81 | this.nodeImpacts.Clear();
|
---|
82 | if (Content != null && Content.Model != null && Content.ProblemData != null) {
|
---|
83 | SymbolicSimplifier simplifier = new SymbolicSimplifier();
|
---|
84 | simplifiedExpressionTree = simplifier.Simplify(Content.Model.SymbolicExpressionTree);
|
---|
85 | int samplesStart = Content.ProblemData.TrainingSamplesStart.Value;
|
---|
86 | int samplesEnd = Content.ProblemData.TrainingSamplesEnd.Value;
|
---|
87 | SymbolicExpressionTree tree = (SymbolicExpressionTree)simplifiedExpressionTree.Clone();
|
---|
88 | double originalTrainingMeanSquaredError = SymbolicRegressionMeanSquaredErrorEvaluator.Calculate(
|
---|
89 | Content.Model.Interpreter, tree, Content.LowerEstimationLimit, Content.UpperEstimationLimit,
|
---|
90 | Content.ProblemData.Dataset, Content.ProblemData.TargetVariable.Value,
|
---|
91 | Enumerable.Range(samplesStart, samplesEnd - samplesStart));
|
---|
92 |
|
---|
93 | this.CalculateReplacementNodes();
|
---|
94 |
|
---|
95 | this.CalculateNodeImpacts(tree, tree.Root.SubTrees[0], originalTrainingMeanSquaredError);
|
---|
96 | this.treeChart.Tree = new SymbolicExpressionTree(simplifiedExpressionTree.Root.SubTrees[0].SubTrees[0]);
|
---|
97 | this.PaintNodeImpacts();
|
---|
98 | }
|
---|
99 | }
|
---|
100 |
|
---|
101 | private void CalculateReplacementNodes() {
|
---|
102 | ISymbolicExpressionTreeInterpreter interpreter = Content.Model.Interpreter;
|
---|
103 | IEnumerable<int> trainingSamples = Enumerable.Range(Content.ProblemData.TrainingSamplesStart.Value, Content.ProblemData.TrainingSamplesEnd.Value - Content.ProblemData.TrainingSamplesStart.Value);
|
---|
104 | SymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
|
---|
105 | SymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
|
---|
106 | root.AddSubTree(start);
|
---|
107 | SymbolicExpressionTree tree = new SymbolicExpressionTree(root);
|
---|
108 | foreach (SymbolicExpressionTreeNode node in this.simplifiedExpressionTree.IterateNodesPrefix()) {
|
---|
109 | if (!(node.Symbol is ProgramRootSymbol || node.Symbol is StartSymbol)) {
|
---|
110 | while (start.SubTrees.Count > 0) start.RemoveSubTree(0);
|
---|
111 | start.AddSubTree(node);
|
---|
112 | double constantTreeNodeValue = interpreter.GetSymbolicExpressionTreeValues(tree, Content.ProblemData.Dataset, trainingSamples).Median();
|
---|
113 | ConstantTreeNode constantTreeNode = MakeConstantTreeNode(constantTreeNodeValue);
|
---|
114 | replacementNodes[node] = constantTreeNode;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 | private void CalculateNodeImpacts(SymbolicExpressionTree tree, SymbolicExpressionTreeNode currentTreeNode, double originalTrainingMeanSquaredError) {
|
---|
120 | foreach (SymbolicExpressionTreeNode childNode in currentTreeNode.SubTrees.ToList()) {
|
---|
121 | SwitchNode(currentTreeNode, childNode, replacementNodes[childNode]);
|
---|
122 | int samplesStart = Content.ProblemData.TrainingSamplesStart.Value;
|
---|
123 | int samplesEnd = Content.ProblemData.TrainingSamplesEnd.Value;
|
---|
124 | double newTrainingMeanSquaredError = SymbolicRegressionMeanSquaredErrorEvaluator.Calculate(
|
---|
125 | Content.Model.Interpreter, tree,
|
---|
126 | Content.LowerEstimationLimit, Content.UpperEstimationLimit,
|
---|
127 | Content.ProblemData.Dataset, Content.ProblemData.TargetVariable.Value,
|
---|
128 | Enumerable.Range(samplesStart, samplesEnd - samplesStart));
|
---|
129 | nodeImpacts[childNode] = newTrainingMeanSquaredError / originalTrainingMeanSquaredError;
|
---|
130 | SwitchNode(currentTreeNode, replacementNodes[childNode], childNode);
|
---|
131 | CalculateNodeImpacts(tree, childNode, originalTrainingMeanSquaredError);
|
---|
132 | }
|
---|
133 | }
|
---|
134 |
|
---|
135 | private void SwitchNode(SymbolicExpressionTreeNode root, SymbolicExpressionTreeNode oldBranch, SymbolicExpressionTreeNode newBranch) {
|
---|
136 | for (int i = 0; i < root.SubTrees.Count; i++) {
|
---|
137 | if (root.SubTrees[i] == oldBranch) {
|
---|
138 | root.RemoveSubTree(i);
|
---|
139 | root.InsertSubTree(i, newBranch);
|
---|
140 | return;
|
---|
141 | }
|
---|
142 | }
|
---|
143 | }
|
---|
144 |
|
---|
145 | private ConstantTreeNode MakeConstantTreeNode(double value) {
|
---|
146 | Constant constant = new Constant();
|
---|
147 | constant.MinValue = value - 1;
|
---|
148 | constant.MaxValue = value + 1;
|
---|
149 | ConstantTreeNode constantTreeNode = (ConstantTreeNode)constant.CreateTreeNode();
|
---|
150 | constantTreeNode.Value = value;
|
---|
151 | return constantTreeNode;
|
---|
152 | }
|
---|
153 |
|
---|
154 | private void treeChart_SymbolicExpressionTreeNodeDoubleClicked(object sender, MouseEventArgs e) {
|
---|
155 | VisualSymbolicExpressionTreeNode visualTreeNode = (VisualSymbolicExpressionTreeNode)sender;
|
---|
156 | foreach (SymbolicExpressionTreeNode treeNode in simplifiedExpressionTree.IterateNodesPostfix()) {
|
---|
157 | for (int i = 0; i < treeNode.SubTrees.Count; i++) {
|
---|
158 | SymbolicExpressionTreeNode subTree = treeNode.SubTrees[i];
|
---|
159 | if (subTree == visualTreeNode.SymbolicExpressionTreeNode) {
|
---|
160 | treeNode.RemoveSubTree(i);
|
---|
161 | if (replacementNodes.ContainsKey(subTree))
|
---|
162 | treeNode.InsertSubTree(i, replacementNodes[subTree]);
|
---|
163 | else if (subTree is ConstantTreeNode && replacementNodes.ContainsValue((ConstantTreeNode)subTree))
|
---|
164 | treeNode.InsertSubTree(i, replacementNodes.Where(v => v.Value == subTree).Single().Key);
|
---|
165 | else if (!(subTree is ConstantTreeNode))
|
---|
166 | throw new InvalidOperationException("Could not find replacement value.");
|
---|
167 | }
|
---|
168 | }
|
---|
169 | }
|
---|
170 | this.treeChart.Tree = new SymbolicExpressionTree(simplifiedExpressionTree.Root.SubTrees[0].SubTrees[0]);
|
---|
171 |
|
---|
172 | SymbolicExpressionTree tree = (SymbolicExpressionTree)simplifiedExpressionTree.Clone();
|
---|
173 |
|
---|
174 | this.Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
175 | this.Content.Model = new SymbolicRegressionModel(Content.Model.Interpreter, tree);
|
---|
176 | this.Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
177 |
|
---|
178 | this.PaintNodeImpacts();
|
---|
179 | }
|
---|
180 |
|
---|
181 | private void PaintNodeImpacts() {
|
---|
182 | var impacts = nodeImpacts.Values;
|
---|
183 | double max = impacts.Max();
|
---|
184 | double min = impacts.Min();
|
---|
185 | foreach (SymbolicExpressionTreeNode treeNode in simplifiedExpressionTree.IterateNodesPostfix()) {
|
---|
186 | if (!(treeNode is ConstantTreeNode) && nodeImpacts.ContainsKey(treeNode)) {
|
---|
187 | double impact = this.nodeImpacts[treeNode];
|
---|
188 | double replacementValue = this.replacementNodes[treeNode].Value;
|
---|
189 | VisualSymbolicExpressionTreeNode visualTree = treeChart.GetVisualSymbolicExpressionTreeNode(treeNode);
|
---|
190 |
|
---|
191 | if (impact < 1.0) {
|
---|
192 | visualTree.FillColor = Color.FromArgb((int)((1.0 - impact) * 255), Color.Red);
|
---|
193 | } else {
|
---|
194 | visualTree.FillColor = Color.FromArgb((int)((impact - 1.0) / max * 255), Color.Green);
|
---|
195 | }
|
---|
196 | visualTree.ToolTip += Environment.NewLine + "Node impact: " + impact;
|
---|
197 | visualTree.ToolTip += Environment.NewLine + "Replacement value: " + replacementValue;
|
---|
198 | }
|
---|
199 | }
|
---|
200 | this.PaintCollapsedNodes();
|
---|
201 | this.treeChart.Repaint();
|
---|
202 | }
|
---|
203 |
|
---|
204 | private void PaintCollapsedNodes() {
|
---|
205 | foreach (SymbolicExpressionTreeNode treeNode in simplifiedExpressionTree.IterateNodesPostfix()) {
|
---|
206 | if (treeNode is ConstantTreeNode && replacementNodes.ContainsValue((ConstantTreeNode)treeNode))
|
---|
207 | this.treeChart.GetVisualSymbolicExpressionTreeNode(treeNode).LineColor = Color.DarkOrange;
|
---|
208 | else
|
---|
209 | this.treeChart.GetVisualSymbolicExpressionTreeNode(treeNode).LineColor = Color.Black;
|
---|
210 | }
|
---|
211 | }
|
---|
212 |
|
---|
213 | private void btnSimplify_Click(object sender, EventArgs e) {
|
---|
214 | this.CalculateReplacementNodesAndNodeImpacts();
|
---|
215 | }
|
---|
216 | }
|
---|
217 | }
|
---|