Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/SimpleSymbolicRegressionEvaluator.cs @ 11255

Last change on this file since 11255 was 5275, checked in by gkronber, 14 years ago

Merged changes from trunk to data analysis exploration branch and added fractional distance metric evaluator. #1142

File size: 8.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Operators;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis.Symbolic;
32
33namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
34  [Item("SimpleSymbolicRegressionEvaluator", "Evaluates a symbolic regression solution and outputs a matrix of target and estimated values.")]
35  [StorableClass]
36  public sealed class SimpleSymbolicRegressionEvaluator : SingleSuccessorOperator {
37    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
38    private const string FunctionTreeParameterName = "FunctionTree";
39    private const string RegressionProblemDataParameterName = "RegressionProblemData";
40    private const string SamplesStartParameterName = "SamplesStart";
41    private const string SamplesEndParameterName = "SamplesEnd";
42    private const string ValuesParameterName = "Values";
43    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
44    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
45
46    #region ISymbolicRegressionEvaluator Members
47    public ILookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
48      get { return (ILookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
49    }
50
51    public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
52      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[FunctionTreeParameterName]; }
53    }
54
55    public ILookupParameter<DataAnalysisProblemData> RegressionProblemDataParameter {
56      get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[RegressionProblemDataParameterName]; }
57    }
58
59    public IValueLookupParameter<IntValue> SamplesStartParameter {
60      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
61    }
62
63    public IValueLookupParameter<IntValue> SamplesEndParameter {
64      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
65    }
66    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
67      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
68    }
69    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
70      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
71    }
72
73    public ILookupParameter<DoubleMatrix> ValuesParameter {
74      get { return (ILookupParameter<DoubleMatrix>)Parameters[ValuesParameterName]; }
75    }
76
77    #endregion
78    #region properties
79    public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
80      get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
81    }
82    public SymbolicExpressionTree SymbolicExpressionTree {
83      get { return SymbolicExpressionTreeParameter.ActualValue; }
84    }
85    public DataAnalysisProblemData RegressionProblemData {
86      get { return RegressionProblemDataParameter.ActualValue; }
87    }
88    public IntValue SamplesStart {
89      get { return SamplesStartParameter.ActualValue; }
90    }
91    public IntValue SamplesEnd {
92      get { return SamplesEndParameter.ActualValue; }
93    }
94    public DoubleValue UpperEstimationLimit {
95      get { return UpperEstimationLimitParameter.ActualValue; }
96    }
97    public DoubleValue LowerEstimationLimit {
98      get { return LowerEstimationLimitParameter.ActualValue; }
99    }
100
101    #endregion
102
103    [StorableConstructor]
104    private SimpleSymbolicRegressionEvaluator(bool deserializing) : base(deserializing) { }
105    private SimpleSymbolicRegressionEvaluator(SimpleSymbolicRegressionEvaluator original, Cloner cloner) : base(original, cloner) { }
106    public SimpleSymbolicRegressionEvaluator()
107      : base() {
108      Parameters.Add(new LookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic expression tree."));
109      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(FunctionTreeParameterName, "The symbolic regression solution encoded as a symbolic expression tree."));
110      Parameters.Add(new LookupParameter<DataAnalysisProblemData>(RegressionProblemDataParameterName, "The problem data on which the symbolic regression solution should be evaluated."));
111      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The start index of the dataset partition on which the symbolic regression solution should be evaluated."));
112      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The end index of the dataset partition on which the symbolic regression solution should be evaluated."));
113      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
114      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
115      Parameters.Add(new LookupParameter<DoubleMatrix>(ValuesParameterName, "The matrix of target and estimated values as generated by the symbolic regression solution."));
116    }
117
118    public override IDeepCloneable Clone(Cloner cloner) {
119      return new SimpleSymbolicRegressionEvaluator(this, cloner);
120    }
121
122    public override IOperation Apply() {
123      Dataset dataset = RegressionProblemData.Dataset;
124      string targetVariable = RegressionProblemData.TargetVariable.Value;
125      ISymbolicExpressionTreeInterpreter interpreter = SymbolicExpressionTreeInterpreter;
126      SymbolicExpressionTree tree = SymbolicExpressionTree;
127      int start = SamplesStart.Value;
128      int end = SamplesEnd.Value;
129      double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
130      double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
131      int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
132      var estimatedValues = from x in interpreter.GetSymbolicExpressionTreeValues(tree, dataset, Enumerable.Range(start, end - start))
133                            let boundedX = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, x))
134                            select double.IsNaN(boundedX) ? upperEstimationLimit : boundedX;
135      var originalValues = from row in Enumerable.Range(start, end - start) select dataset[row, targetVariableIndex];
136      // NB: indexes must match SimpleEvaluator.ORIGINAL_INDEX and SimpleEvaluator.ESTIMATED_INDEX
137      ValuesParameter.ActualValue = new DoubleMatrix(MatrixExtensions<double>.Create(originalValues.ToArray(), estimatedValues.ToArray()));
138      return base.Apply();
139    }
140  }
141}
Note: See TracBrowser for help on using the repository browser.