1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
34 | [Item("SymbolicRegressionScaledMeanSquaredErrorEvaluator", "Calculates the mean squared error of a linearly scaled symbolic regression solution.")]
|
---|
35 | [StorableClass]
|
---|
36 | public sealed class SymbolicRegressionScaledMeanSquaredErrorEvaluator : SymbolicRegressionMeanSquaredErrorEvaluator {
|
---|
37 |
|
---|
38 | #region parameter properties
|
---|
39 | public ILookupParameter<DoubleValue> AlphaParameter {
|
---|
40 | get { return (ILookupParameter<DoubleValue>)Parameters["Alpha"]; }
|
---|
41 | }
|
---|
42 | public ILookupParameter<DoubleValue> BetaParameter {
|
---|
43 | get { return (ILookupParameter<DoubleValue>)Parameters["Beta"]; }
|
---|
44 | }
|
---|
45 | #endregion
|
---|
46 | #region properties
|
---|
47 | public DoubleValue Alpha {
|
---|
48 | get { return AlphaParameter.ActualValue; }
|
---|
49 | set { AlphaParameter.ActualValue = value; }
|
---|
50 | }
|
---|
51 | public DoubleValue Beta {
|
---|
52 | get { return BetaParameter.ActualValue; }
|
---|
53 | set { BetaParameter.ActualValue = value; }
|
---|
54 | }
|
---|
55 | #endregion
|
---|
56 | [StorableConstructor]
|
---|
57 | private SymbolicRegressionScaledMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
|
---|
58 | private SymbolicRegressionScaledMeanSquaredErrorEvaluator(SymbolicRegressionScaledMeanSquaredErrorEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
59 | public SymbolicRegressionScaledMeanSquaredErrorEvaluator()
|
---|
60 | : base() {
|
---|
61 | Parameters.Add(new LookupParameter<DoubleValue>("Alpha", "Alpha parameter for linear scaling of the estimated values."));
|
---|
62 | Parameters.Add(new LookupParameter<DoubleValue>("Beta", "Beta parameter for linear scaling of the estimated values."));
|
---|
63 | }
|
---|
64 |
|
---|
65 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
66 | return new SymbolicRegressionScaledMeanSquaredErrorEvaluator(this, cloner);
|
---|
67 | }
|
---|
68 |
|
---|
69 | public override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) {
|
---|
70 | double alpha, beta;
|
---|
71 | double mse = Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows, out beta, out alpha);
|
---|
72 | if (ExecutionContext != null) {
|
---|
73 | AlphaParameter.ActualValue = new DoubleValue(alpha);
|
---|
74 | BetaParameter.ActualValue = new DoubleValue(beta);
|
---|
75 | }
|
---|
76 | return mse;
|
---|
77 | }
|
---|
78 |
|
---|
79 | public static double Calculate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows, out double beta, out double alpha) {
|
---|
80 | IEnumerable<double> originalValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
|
---|
81 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, rows);
|
---|
82 | CalculateScalingParameters(originalValues, estimatedValues, out beta, out alpha);
|
---|
83 |
|
---|
84 | return CalculateWithScaling(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows, beta, alpha);
|
---|
85 | }
|
---|
86 |
|
---|
87 | public static double CalculateWithScaling(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows, double beta, double alpha) {
|
---|
88 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, rows);
|
---|
89 | IEnumerable<double> originalValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
|
---|
90 | IEnumerator<double> originalEnumerator = originalValues.GetEnumerator();
|
---|
91 | IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator();
|
---|
92 | OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
|
---|
93 |
|
---|
94 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
95 | double estimated = estimatedEnumerator.Current * beta + alpha;
|
---|
96 | double original = originalEnumerator.Current;
|
---|
97 | if (double.IsNaN(estimated))
|
---|
98 | estimated = upperEstimationLimit;
|
---|
99 | else
|
---|
100 | estimated = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, estimated));
|
---|
101 | mseEvaluator.Add(original, estimated);
|
---|
102 | }
|
---|
103 |
|
---|
104 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
|
---|
105 | throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
|
---|
106 | } else {
|
---|
107 | return mseEvaluator.MeanSquaredError;
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | /// <summary>
|
---|
112 | /// Calculates linear scaling parameters in one pass.
|
---|
113 | /// The formulas to calculate the scaling parameters were taken from Scaled Symblic Regression by Maarten Keijzer.
|
---|
114 | /// http://www.springerlink.com/content/x035121165125175/
|
---|
115 | /// </summary>
|
---|
116 | public static void CalculateScalingParameters(IEnumerable<double> original, IEnumerable<double> estimated, out double beta, out double alpha) {
|
---|
117 | IEnumerator<double> originalEnumerator = original.GetEnumerator();
|
---|
118 | IEnumerator<double> estimatedEnumerator = estimated.GetEnumerator();
|
---|
119 | OnlineMeanAndVarianceCalculator yVarianceCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
120 | OnlineMeanAndVarianceCalculator tMeanCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
121 | OnlineCovarianceEvaluator ytCovarianceEvaluator = new OnlineCovarianceEvaluator();
|
---|
122 | int cnt = 0;
|
---|
123 |
|
---|
124 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
125 | double y = estimatedEnumerator.Current;
|
---|
126 | double t = originalEnumerator.Current;
|
---|
127 | if (IsValidValue(t) && IsValidValue(y)) {
|
---|
128 | tMeanCalculator.Add(t);
|
---|
129 | yVarianceCalculator.Add(y);
|
---|
130 | ytCovarianceEvaluator.Add(y, t);
|
---|
131 |
|
---|
132 | cnt++;
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())
|
---|
137 | throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
|
---|
138 | if (cnt < 2) {
|
---|
139 | alpha = 0;
|
---|
140 | beta = 1;
|
---|
141 | } else {
|
---|
142 | if (yVarianceCalculator.PopulationVariance.IsAlmost(0.0))
|
---|
143 | beta = 1;
|
---|
144 | else
|
---|
145 | beta = ytCovarianceEvaluator.Covariance / yVarianceCalculator.PopulationVariance;
|
---|
146 |
|
---|
147 | alpha = tMeanCalculator.Mean - beta * yVarianceCalculator.Mean;
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 | private static bool IsValidValue(double d) {
|
---|
152 | return !double.IsInfinity(d) && !double.IsNaN(d) && d > -1.0E07 && d < 1.0E07; // don't consider very large or very small values for scaling
|
---|
153 | }
|
---|
154 | }
|
---|
155 | }
|
---|