Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Evaluators/SymbolicRegressionMeanSquaredErrorEvaluator.cs @ 4949

Last change on this file since 4949 was 4195, checked in by gkronber, 14 years ago

Created a feature/exploration branch for new data analysis features #1142

File size: 3.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis.Evaluators;
30using HeuristicLab.Problems.DataAnalysis.Symbolic;
31
32namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
33  [Item("SymbolicRegressionMeanSquaredErrorEvaluator", "Calculates the mean squared error of a symbolic regression solution.")]
34  [StorableClass]
35  public class SymbolicRegressionMeanSquaredErrorEvaluator : SingleObjectiveSymbolicRegressionEvaluator {
36
37    public SymbolicRegressionMeanSquaredErrorEvaluator()
38      : base() {
39    }
40
41    public override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) {
42      double mse = Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows);
43      return mse;
44    }
45
46    public static double Calculate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) {
47      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, rows);
48      IEnumerable<double> originalValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
49      IEnumerator<double> originalEnumerator = originalValues.GetEnumerator();
50      IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator();
51      OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
52
53      while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
54        double estimated = estimatedEnumerator.Current;
55        double original = originalEnumerator.Current;
56        if (double.IsNaN(estimated))
57          estimated = upperEstimationLimit;
58        else
59          estimated = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, estimated));
60        mseEvaluator.Add(original, estimated);
61      }
62
63      if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
64        throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
65      } else {
66        return mseEvaluator.MeanSquaredError;
67      }
68    }
69  }
70}
Note: See TracBrowser for help on using the repository browser.