Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Evaluators/SingleObjectiveSymbolicRegressionEvaluator.cs @ 10743

Last change on this file since 10743 was 5275, checked in by gkronber, 14 years ago

Merged changes from trunk to data analysis exploration branch and added fractional distance metric evaluator. #1142

File size: 9.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Operators;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33
34namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
35  [Item("SingleObjectiveSymbolicRegressionEvaluator", "Evaluates a symbolic regression solution.")]
36  [StorableClass]
37  public abstract class SingleObjectiveSymbolicRegressionEvaluator : SingleSuccessorOperator, ISymbolicRegressionEvaluator {
38    private const string RandomParameterName = "Random";
39    private const string QualityParameterName = "Quality";
40    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
41    private const string FunctionTreeParameterName = "FunctionTree";
42    private const string RegressionProblemDataParameterName = "RegressionProblemData";
43    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
44    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
45    private const string SamplesStartParameterName = "SamplesStart";
46    private const string SamplesEndParameterName = "SamplesEnd";
47    private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
48    #region ISymbolicRegressionEvaluator Members
49
50    public ILookupParameter<IRandom> RandomParameter {
51      get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
52    }
53    public ILookupParameter<DoubleValue> QualityParameter {
54      get { return (ILookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
55    }
56
57    public ILookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
58      get { return (ILookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
59    }
60
61    public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
62      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[FunctionTreeParameterName]; }
63    }
64
65    public ILookupParameter<DataAnalysisProblemData> RegressionProblemDataParameter {
66      get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[RegressionProblemDataParameterName]; }
67    }
68
69    public IValueLookupParameter<IntValue> SamplesStartParameter {
70      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
71    }
72
73    public IValueLookupParameter<IntValue> SamplesEndParameter {
74      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
75    }
76    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
77      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
78    }
79    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
80      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
81    }
82    public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
83      get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
84    }
85
86
87    #endregion
88    #region properties
89    public IRandom Random {
90      get { return RandomParameter.ActualValue; }
91    }
92    public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
93      get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
94    }
95    public SymbolicExpressionTree SymbolicExpressionTree {
96      get { return SymbolicExpressionTreeParameter.ActualValue; }
97    }
98    public DataAnalysisProblemData RegressionProblemData {
99      get { return RegressionProblemDataParameter.ActualValue; }
100    }
101    public IntValue SamplesStart {
102      get { return SamplesStartParameter.ActualValue; }
103    }
104    public IntValue SamplesEnd {
105      get { return SamplesEndParameter.ActualValue; }
106    }
107    public DoubleValue UpperEstimationLimit {
108      get { return UpperEstimationLimitParameter.ActualValue; }
109    }
110    public DoubleValue LowerEstimationLimit {
111      get { return LowerEstimationLimitParameter.ActualValue; }
112    }
113    public PercentValue RelativeNumberOfEvaluatedSamples {
114      get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
115    }
116    #endregion
117
118    [StorableConstructor]
119    protected SingleObjectiveSymbolicRegressionEvaluator(bool deserializing) : base(deserializing) { }
120    protected SingleObjectiveSymbolicRegressionEvaluator(SingleObjectiveSymbolicRegressionEvaluator original, Cloner cloner)
121      : base(original, cloner) {
122    }
123    public SingleObjectiveSymbolicRegressionEvaluator()
124      : base() {
125      Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
126      Parameters.Add(new LookupParameter<DoubleValue>(QualityParameterName, "The quality of the evaluated symbolic regression solution."));
127      Parameters.Add(new LookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic expression tree."));
128      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(FunctionTreeParameterName, "The symbolic regression solution encoded as a symbolic expression tree."));
129      Parameters.Add(new LookupParameter<DataAnalysisProblemData>(RegressionProblemDataParameterName, "The problem data on which the symbolic regression solution should be evaluated."));
130      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The start index of the dataset partition on which the symbolic regression solution should be evaluated."));
131      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The end index of the dataset partition on which the symbolic regression solution should be evaluated."));
132      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
133      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
134      Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
135    }
136
137
138    [StorableHook(Persistence.Default.CompositeSerializers.Storable.HookType.AfterDeserialization)]
139    private void AfterDeserialization() {
140      if (!Parameters.ContainsKey(RelativeNumberOfEvaluatedSamplesParameterName))
141        Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
142      if (!Parameters.ContainsKey(RandomParameterName))
143        Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
144    }
145
146    public override IOperation Apply() {
147      int seed = Random.Next();
148      IEnumerable<int> rows = GenerateRowsToEvaluate(seed, RelativeNumberOfEvaluatedSamples.Value, SamplesStart.Value, SamplesEnd.Value)
149          .Where(i => i < RegressionProblemData.TestSamplesStart.Value || RegressionProblemData.TestSamplesEnd.Value <= i);
150      double quality = Evaluate(SymbolicExpressionTreeInterpreter, SymbolicExpressionTree, LowerEstimationLimit.Value, UpperEstimationLimit.Value,
151        RegressionProblemData.Dataset,
152        RegressionProblemData.TargetVariable.Value, rows);
153      QualityParameter.ActualValue = new DoubleValue(quality);
154      return base.Apply();
155    }
156
157
158    internal static IEnumerable<int> GenerateRowsToEvaluate(int seed, double relativeAmount, int start, int end) {
159      if (end < start) throw new ArgumentException("Start value is larger than end value.");
160      int count = (int)((end - start) * relativeAmount);
161      if (count == 0) count = 1;
162      return RandomEnumerable.SampleRandomNumbers(seed, start, end, count);
163    }
164
165    public abstract double Evaluate(ISymbolicExpressionTreeInterpreter interpreter,
166      SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit,
167      Dataset dataset,
168      string targetVariable,
169      IEnumerable<int> rows);
170  }
171}
Note: See TracBrowser for help on using the repository browser.