Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Evaluators/MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator.cs @ 5477

Last change on this file since 5477 was 5275, checked in by gkronber, 14 years ago

Merged changes from trunk to data analysis exploration branch and added fractional distance metric evaluator. #1142

File size: 4.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis.Symbolic;
30using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
31
32namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
33  [Item("MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator", "Calculates the mean squared error and the number of variables of a symbolic regression solution.")]
34  [StorableClass]
35  public sealed class MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator : MultiObjectiveSymbolicRegressionEvaluator {
36    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
37    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
38
39    #region parameter properties
40    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
41      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
42    }
43    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
44      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
45    }
46    #endregion
47    #region properties
48    public DoubleValue UpperEstimationLimit {
49      get { return UpperEstimationLimitParameter.ActualValue; }
50    }
51    public DoubleValue LowerEstimationLimit {
52      get { return LowerEstimationLimitParameter.ActualValue; }
53    }
54    #endregion
55    [StorableConstructor]
56    private MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
57    private MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator(MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator original, Cloner cloner)
58      : base(original, cloner) {
59    }
60    public MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator()
61      : base() {
62      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
63      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
64    }
65
66    public override IDeepCloneable Clone(Cloner cloner) {
67      return new MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator(this, cloner);
68    }
69
70    protected override double[] Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, StringValue targetVariable, IEnumerable<int> rows) {
71      double mse = SymbolicRegressionMeanSquaredErrorEvaluator.Calculate(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable.Value, rows);
72      List<string> vars = new List<string>();
73      solution.Root.ForEachNodePostfix(n => {
74        var varNode = n as VariableTreeNode;
75        if (varNode != null && !vars.Contains(varNode.VariableName)) {
76          vars.Add(varNode.VariableName);
77        }
78      });
79      return new double[2] { mse, vars.Count };
80    }
81  }
82}
Note: See TracBrowser for help on using the repository browser.