Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Evaluators/MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator.cs @ 4949

Last change on this file since 4949 was 4166, checked in by gkronber, 14 years ago

Added MSE evaluator for multi-objective symb reg problems. #1118

File size: 3.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis.Evaluators;
30using HeuristicLab.Problems.DataAnalysis.Symbolic;
31using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
32
33namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
34  [Item("MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator", "Calculates the mean squared error and the number of variables of a symbolic regression solution.")]
35  [StorableClass]
36  public class MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator : MultiObjectiveSymbolicRegressionEvaluator {
37    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
38    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
39
40    #region parameter properties
41    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
42      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
43    }
44    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
45      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
46    }
47    #endregion
48    #region properties
49    public DoubleValue UpperEstimationLimit {
50      get { return UpperEstimationLimitParameter.ActualValue; }
51    }
52    public DoubleValue LowerEstimationLimit {
53      get { return LowerEstimationLimitParameter.ActualValue; }
54    }
55    #endregion
56    public MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator()
57      : base() {
58      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
59      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
60    }
61
62    protected override double[] Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, StringValue targetVariable, IEnumerable<int> rows) {
63      double mse = SymbolicRegressionMeanSquaredErrorEvaluator.Calculate(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable.Value, rows);
64      List<string> vars = new List<string>();
65      solution.Root.ForEachNodePostfix(n => {
66        var varNode = n as VariableTreeNode;
67        if (varNode != null && !vars.Contains(varNode.VariableName)) {
68          vars.Add(varNode.VariableName);
69        }
70      });
71      return new double[2] { mse, vars.Count };
72    }
73  }
74}
Note: See TracBrowser for help on using the repository browser.